精英家教网 > 高中数学 > 题目详情
4.已知数列{an}的前n项和为Sn,点(n,$\frac{{S}_{n}}{n}$)在直线y=$\frac{1}{2}$x+$\frac{11}{2}$上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{3}{(2{a}_{n}-11)(2{a}_{n+1}-11)}$,求数列{bn}的前n项和为Tn,并求使不等式Tn>$\frac{k}{20}$对一切n∈N*都成立的最大正整数k的值.

分析 (Ⅰ)由题意,得$\frac{{S}_{n}}{n}$=$\frac{1}{2}n+\frac{11}{2}$,化为Sn=$\frac{1}{2}{n}^{2}+\frac{11}{2}n$. 利用递推关系即可得出.
(2)利用“裂项求和”可得Tn,再利用数列的单调性、不等式的性质即可得出.

解答 解:(Ⅰ)由题意,得$\frac{{S}_{n}}{n}$=$\frac{1}{2}n+\frac{11}{2}$,化为Sn=$\frac{1}{2}{n}^{2}+\frac{11}{2}n$.…(2分)
故当n≥2时,an=Sn-Sn-1=$(\frac{1}{2}{n}^{2}+\frac{11}{2}n)$-$[\frac{1}{2}(n-1)^{2}+\frac{11}{2}(n-1)]$=n+5,…(5分)
当n=1时,a1=S1=6=1+5,
∴an=n+5.…(6分)
(Ⅱ)bn=$\frac{3}{(2{a}_{n}-11)(2{a}_{n+1}-11)}$=$\frac{3}{(2n-1)(2n+1)}$=$\frac{3}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,…(8分)
∴Tn=$\frac{3}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{3}{2}(1-\frac{1}{2n+1})$=$\frac{3n}{2n+1}$.…(10分)
由于Tn+1-Tn=$3(\frac{n+1}{2n+3}-\frac{n}{2n+1})$=$\frac{3}{(2n+3)(2n+1)}$>0,
因此Tn单调递增,…(12分)
故(Tnmin=1.
令1$>\frac{k}{20}$,解得k<20,
∴kmax=19.…(13分)

点评 本题考查了数列的单调性、不等式的性质、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.当x∈[0,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是(  )
A.(-∞,-6]B.[-6,+∞)C.[-6,0]D.[-6,6]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,既是奇函数又是增函数的为(  )
A.y=lnx3B.y=-x2C.y=x|x|D.$y=\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一位同学家里订了一份报纸,送报人每天都在在早上5:20~6:40之间将报纸送达,该同学的爸爸需要早上6:00~7:00之间出发去上班,则这位同学的爸爸在离开家前能拿到报纸的概率是(  )
A.$\frac{3}{9}$B.$\frac{5}{6}$C.$\frac{7}{18}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知角2α的顶点在原点,始边与x轴的非负半轴重合,终边经过点$(-1,\sqrt{3})$,且2α∈[0,2π),则tanα等于(  )
A.$\sqrt{3}$B.$-\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrowa=({2,1}),\overrightarrowb=({3,λ})$,若$\overrightarrowa⊥\overrightarrowb$,则λ=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知${(\sqrt{x}-\frac{3}{{\sqrt{x}}})^n}$二项展开式中,第4项的二项式系数与第3项的二项式系数的比为8:3.
(1)求n的值;
(2)求展开式中x3项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆x2$+\frac{4}{3}{y}^{2}$=1的左、右焦点分别为F1、F2,P是椭圆上任意一点,O为坐标原点,动点M满足|OM|2=|PF1|2+|PF2|2+2$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$,O、P、M三点共线,过定点Q(0,2)的直线l与动点M的轨迹交于G、H两点(G在Q、H之间).
(I)求动点M的轨迹方程;
(Ⅱ)设直线l的斜率k>0,在x轴上是否存在点N(m,0)使得NH=NG?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.等差数列{an}的第4项比第2项大6,第1项与第5项的积为-32,求此数列的前三项.

查看答案和解析>>

同步练习册答案