精英家教网 > 高中数学 > 题目详情
2.已知平面图形ABCD为凸四边形(凸四边形即任取平面四边形一边所在的直线,其余各边均在此直线的同侧),且AB=2,BC=4,CD=5,DA=3,则四边形ABCD面积S的最大值为(  )
A.$\sqrt{30}$B.2$\sqrt{30}$C.4$\sqrt{30}$D.6$\sqrt{30}$

分析 设AC=x,在△ABC和△ACD中,由余弦定理可得,15cosD-8cosB=7,再由三角形的面积公式可得8sinB+15sinD=2S,两式两边平方结合两角和的余弦公式和余弦函数的值域,即可求得最大值.

解答 解:设AC=x,在△ABC中,由余弦定理可得,
x2=22+42-2×2×4cosB=20-16cosB,
在△ACD中,由余弦定理可得,
x2=32+52-2×3×5cosD=34-30cosD,
即有15cosD-8cosB=7,
又四边形ABCD面积S=$\frac{1}{2}$×2×4sinB+$\frac{1}{2}$×3×5sinD
=$\frac{1}{2}$(8sinB+15sinD),
即有8sinB+15sinD=2S,
又15cosD-8cosB=7,
两式两边平方可得,64+225+240(sinBsinD-cosBcosD)=49+4s2
化简可得,-240cos(B+D)=4S2-240,
由于-1≤cos(B+D)<1,即有S≤2$\sqrt{30}$.
当cos(B+D)=-1即B+D=π时,4S2-240=240,
解得S=2$\sqrt{30}$.
故S的最大值为2$\sqrt{30}$.
故选B.

点评 本题考查三角形的面积公式和余弦定理的运用,同时考查两角和的余弦公式的运用和余弦函数的最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足:a1=λ,an+1=$\frac{2}{{a}_{n}+1}$(n∈N*
(1)若a1>a2,求实数λ的取值范围;
(2)若λ≠-2,记bn=$\frac{{a}_{n}-1}{{a}_{n}+2}$,求数列{bn}的通项公式;
(3)是否存在实数λ,使得数列{an}是递减数列?若存在,求出实数λ的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{m}$=(1,sin(ωx+$\frac{π}{3}$)),$\overrightarrow{n}$=(2,2sin(ωx-$\frac{π}{6}$))(其中ω为正常数),设f(x)=$\overrightarrow{m}•\overrightarrow{n}$-2,且函数f(x)的图象的相邻两个对称中心的距离为$\frac{π}{2}$.
(1)求当$\overrightarrow{m}∥\overrightarrow{n}$时,tanx的值;
(2)求f(x)在区间[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个算法的程序框图如图所示,若输入的x值为2015,则输出的i值为(  )
A.3B.5C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.行驶中的 汽车在刹车时,由于惯性作用,要继续向前滑行一段距离才能停下来,这断距离叫做刹车距离,某种路面上,某种型号汽车的刹车距离ym与汽车的车速xkm/h满足下列关系:y=$\frac{nx}{100}$+$\frac{{x}^{2}}{400}$(n为常数,n∈N),做两次刹车实验,有数据如图,其中5<y1<7,13<y2<15
(1)求出n的值
(2)要求刹车距离不超过18.4m,则行驶的最大速度应为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}为等差数列,{an}的前n项和为Sn,a1=1,S3=9.
(1)求an与Sn
(2)若数列{bn}为等比数列,且b1=a1,b2=a2,求bn及数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设f(x)=x2+2cosx,x∈R,且f(α)>f(β),则下列结论中成立的是(  )
A.α>βB.α2<β2C.α<βD.α2>β2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列函数的值域:
(1)y=x2+2x,x∈[0,3];
(2)y=$\frac{x-3}{x+1}$;
(3)y=x-$\sqrt{1-2x}$;
(4)y=log3x+logx3-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{x+y≤2}\\{x-y≤0}\end{array}\right.$,则z=(a2+1)x-a2y(a≠0)的大值为1.

查看答案和解析>>

同步练习册答案