·ÖÎö £¨1£©¼ÇÍÖÔ²µÄÓÒ½¹µãΪF£¨c£¬0£©£¬´Ó¶ø¿ÉµÃc=2$\sqrt{2}$£¬´Ó¶øÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÓÉÌâÒâÖªA£¨0£¬-1£©£¬AM¡ÍAN£¬¶øÖ±ÏßANµÄ·½³ÌΪy=kx-1£¨k£¾0£©£¬ÓëÍÖÔ²ÁªÁ¢»¯¼ò½âµÃx=0»òx=$\frac{18k}{9{k}^{2}+1}$£¬´Ó¶ø¿ÉµÃ|AN|=$\sqrt{1+{k}^{2}}$•$\frac{18k}{9{k}^{2}+1}$£¬|AM|=$\sqrt{1+\frac{1}{{k}^{2}}}$•$\frac{18k}{9+{k}^{2}}$£¬´Ó¶ø»¯¼ò¿ÉµÃS=$\frac{1}{2}$|AN|•|AM|=162•$\frac{k£¨{k}^{2}+1£©}{£¨9{k}^{2}+1£©£¨9+{k}^{2}£©}$£¬ÔÙÁîf£¨k£©=$\frac{k£¨{k}^{2}+1£©}{£¨9{k}^{2}+1£©£¨9+{k}^{2}£©}$£¬´Ó¶øÇóµ¼È·¶¨º¯ÊýµÄµ¥µ÷ÐÔ£¬´Ó¶øÇó×îÖµ£®
½â´ð ½â£º£¨1£©¼ÇÍÖÔ²µÄÓÒ½¹µãΪF£¨c£¬0£©£¬
Ôò$\frac{|c+3\sqrt{2}|}{\sqrt{2}}$=5£¬
½âµÃ£¬c=2$\sqrt{2}$£¬
ÓÖ¡ß$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{10}$£¬
¡àa=3£¬b=1£»
¹ÊÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{9}$+y2=1£»
£¨2£©ÓÉÌâÒâÖª£¬A£¨0£¬-1£©£¬AM¡ÍAN£¬
ÉèÖ±ÏßANµÄ·½³ÌΪy=kx-1£¨k£¾0£©£»Óë$\frac{{x}^{2}}{9}$+y2=1ÁªÁ¢»¯¼ò¿ÉµÃ£¬£¨9k2+1£©x2-18kx=0£¬
½âµÃ£¬x=0»òx=$\frac{18k}{9{k}^{2}+1}$£¬
ÉèÖ±ÏßAMµÄ·½³ÌΪy=-$\frac{1}{k}$x-1£¨k£¾0£©£»
ͬÀí¿ÉµÃ£¬x=0»òx=-$\frac{18k}{9+{k}^{2}}$£¬
¹Ê|AN|=$\sqrt{1+{k}^{2}}$•$\frac{18k}{9{k}^{2}+1}$£¬|AM|=$\sqrt{1+\frac{1}{{k}^{2}}}$•$\frac{18k}{9+{k}^{2}}$£¬
S=$\frac{1}{2}$|AN|•|AM|=$\frac{1}{2}$$\sqrt{1+{k}^{2}}$•$\frac{18k}{9{k}^{2}+1}$•$\sqrt{1+\frac{1}{{k}^{2}}}$•$\frac{18k}{9+{k}^{2}}$=162•$\frac{k£¨{k}^{2}+1£©}{£¨9{k}^{2}+1£©£¨9+{k}^{2}£©}$£¬
Áîf£¨k£©=$\frac{k£¨{k}^{2}+1£©}{£¨9{k}^{2}+1£©£¨9+{k}^{2}£©}$£¬
Ôòf¡ä£¨k£©=$\frac{£¨3{k}^{2}+1£©£¨9{k}^{2}+1£©£¨9+{k}^{2}£©-£¨{k}^{3}+k£©£¨36{k}^{3}+164k£©}{£¨9{k}^{2}+1£©^{2}£¨9+{k}^{2}£©^{2}}$
=$\frac{£¨1-{k}^{2}£©£¨9{k}^{4}-46{k}^{2}+9£©}{£¨9{k}^{2}+1£©^{2}£¨9+{k}^{2}£©^{2}}$
=$\frac{9£¨1-{k}^{2}£©£¨{k}^{2}-\frac{23-8\sqrt{7}}{9}£©£¨{k}^{2}-\frac{23+8\sqrt{7}}{9}£©}{£¨9{k}^{2}+1£©^{2}£¨9+{k}^{2}£©^{2}}$
=$\frac{-9£¨k+1£©£¨k+\frac{4-\sqrt{7}}{3}£©£¨k+\frac{4+\sqrt{7}}{3}£©£¨k-\frac{4-\sqrt{7}}{3}£©£¨k-1£©£¨k-\frac{4+\sqrt{7}}{3}£©}{£¨9{k}^{2}+1£©^{2}£¨9+{k}^{2}£©^{2}}$£¬
¹Êf£¨k£©ÔÚ£¨0£¬$\frac{4-\sqrt{7}}{3}$£©ÉÏÊÇÔöº¯Êý£¬ÔÚ£¨$\frac{4-\sqrt{7}}{3}$£¬1£©ÉÏÊǼõº¯Êý£¬ÔÚ£¨1£¬$\frac{4+\sqrt{7}}{3}$£©ÉÏÊÇÔöº¯Êý£¬ÔÚ£¨$\frac{4+\sqrt{7}}{3}$£¬+¡Þ£©ÉÏÊǼõº¯Êý£»
¶øµ±k=$\frac{4-\sqrt{7}}{3}$ʱ£¬S=162•$\frac{\frac{4-\sqrt{7}}{3}£¨\frac{23-8\sqrt{7}}{9}+1£©}{£¨9•\frac{23-8\sqrt{7}}{9}+1£©£¨9+\frac{23-8\sqrt{7}}{9}£©}$=$\frac{27}{8}$£¬
µ±k=$\frac{4+\sqrt{7}}{3}$ʱ£¬S=162•$\frac{\frac{4+\sqrt{7}}{3}£¨\frac{23+8\sqrt{7}}{9}+1£©}{£¨23+8\sqrt{7}+1£©£¨9+\frac{23+8\sqrt{7}}{9}£©}$=$\frac{27}{8}$£¬
¹Ê¡÷AMNÃæ»ýµÄ×î´óֵΪ$\frac{27}{8}$£®
µãÆÀ ±¾Ì⿼²éÁËÔ²×¶ÇúÏßÓëÖ±ÏßµÄλÖùØÏµµÄÓ¦Óü°ÊýÐνáºÏµÄ˼Ïë·½·¨Ó¦Óã¬Í¬Ê±¿¼²éÁ˵¼ÊýµÄ×ÛºÏÓ¦Óã¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬0£© | B£® | £¨0£¬1£© | C£® | £¨1£¬+¡Þ£© | D£® | £¨-¡Þ£¬0£©¡È£¨1£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 2016 | D£® | 2018 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com