精英家教网 > 高中数学 > 题目详情
4.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为$4(\sqrt{2}+1)$.一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1;
(Ⅲ)探究$\frac{1}{{|{AB}|}}+\frac{1}{{|{CD}|}}$是否是个定值,若是,求出这个定值;若不是,请说明理由.

分析 (Ⅰ)由椭离心率为$\frac{{\sqrt{2}}}{2}$,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为$4(\sqrt{2}+1)$,求出a,b,从而能求出椭圆的标准方程,设等轴双曲线的标准方程为$\frac{x^2}{m^2}-\frac{y^2}{m^2}=1$,由等轴双曲线的顶点是椭圆的焦点,求出m,从而能求出双曲线的标准方程.
(Ⅱ)设P(x0,y0),F1(-2,0),F2(2,0),则k1=$\frac{y_0}{{{x_0}+2}}$,${k_2}=\frac{y_0}{{{x_0}-2}}$,由此能证明k1k2=1.
(Ⅲ)PF1的方程为y=k1(x+2),将其代入椭圆方程得$({2{k_1}^2+1}){x^2}+8{k_1}^2x+8{k_1}^2-8=0$,由此利用韦达定理、弦长公式,结合已知条件能推导出$\frac{1}{{|{AB}|}}+\frac{1}{{|{CD}|}}$是定值.

解答 解:(Ⅰ)设椭圆的半焦距为c,由题意知:$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$,2a+2c=4($\sqrt{2}$+1)
解得a=2$\sqrt{2}$,c=2,
又a2=b2+c2,解得b=2.
故椭圆的标准方程为$\frac{x^2}{8}+\frac{y^2}{4}=1$
由题意设等轴双曲线的标准方程为$\frac{x^2}{m^2}-\frac{y^2}{m^2}=1$(m>0),
因为等轴双曲线的顶点是椭圆的焦点.
所以m=2,
因此双曲线的标准方程为$\frac{x^2}{4}-\frac{y^2}{4}=1$
证明:(Ⅱ)设P(x0,y0),F1(-2,0),F2(2,0)
则k1=$\frac{y_0}{{{x_0}+2}}$,${k_2}=\frac{y_0}{{{x_0}-2}}$.
因为点P在双曲线x2-y2=4上,所以$x_0^2-y_0^2=4$.
因此${k_1}{k_2}=\frac{y_0}{{{x_0}+2}}•\frac{y_0}{{{x_0}-2}}=\frac{y_0^2}{x_0^2-4}=1$,
故k1k2=1.
解:(Ⅲ)设A(x1,y1),B(x2,y2),
由于PF1的方程为y=k1(x+2),将其代入椭圆方程得$({2{k_1}^2+1}){x^2}+8{k_1}^2x+8{k_1}^2-8=0$
所以${x_1}+{x_2}=-\frac{{8{k_1}^2}}{{2{k_1}^2+1}},\;{x_1}•{x_2}=\frac{{8{k_1}^2-8}}{{2{k_1}^2+1}}$,
所以$|{AB}|=\sqrt{1+{k_1}^2}\sqrt{{{({{x_1}+{x_2}})}^2}-4{x_1}{x_2}}$=$\sqrt{1+{k_1}^2}\sqrt{{{({\frac{{8{k_1}^2}}{{2{k_1}^2+1}}})}^2}-4×\frac{{8{k_1}^2-8}}{{2{k_1}^2+1}}}$=$4\sqrt{2}\frac{{{k_1}^2+1}}{{2{k_1}^2+1}}$
同理可得$|{CD}|=4\sqrt{2}\frac{{{k_2}^2+1}}{{2{k_2}^2+1}}$.
则$\frac{1}{{|{AB}|}}+\frac{1}{{|{CD}|}}=\frac{1}{{4\sqrt{2}}}(\frac{{2{k_1}^2+1}}{{{k_1}^2+1}}+\frac{{2{k_2}^2+1}}{{{k_2}^2+1}})$,
又k1k2=1,
所以$\frac{1}{{|{AB}|}}+\frac{1}{{|{CD}|}}=\frac{1}{{4\sqrt{2}}}(\frac{{2{k_1}^2+1}}{{{k_1}^2+1}}+\frac{{\frac{2}{{{k_1}^2}}+1}}{{\frac{1}{{{k_1}^2}}}})$=$\frac{{\sqrt{2}}}{8}(\frac{{2{k_1}^2+1}}{{{k_1}^2+1}}+\frac{{{k_1}^2+2}}{{{k_1}^2+1}})=\frac{{3\sqrt{2}}}{8}$.
故$\frac{1}{{|{AB}|}}+\frac{1}{{|{CD}|}}=\frac{{3\sqrt{2}}}{8}$恒成立,即$\frac{1}{{|{AB}|}}+\frac{1}{{|{CD}|}}$是定值$\frac{3\sqrt{2}}{8}$.

点评 本题考查椭圆和双曲线的标准方程的求示,考查两直线的斜率之积为1的证明,考查两线段长的倒数和是否为定值的探究,是中档题,解题时要认真审题,注意双曲线、椭圆的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,矩形ABCD和△ABP所在的平面互相垂直,AB=2AD=2,PA=PB.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)若多面体ABCDP的体积是$\frac{2\sqrt{6}}{9}$,求直线PD与平面ABCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足:$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ x-2y-3≤0\end{array}\right.$,则z=2x+y的最小值(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,则下列各式成立的是(  )
A.$\overrightarrow{a}$∥$\overrightarrow{b}$B.$\overrightarrow{a}$⊥$\overrightarrow{b}$C.$\overrightarrow{a}$=$\overrightarrow{b}$D.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,D在边AC上,AB=4,AC=6,BD=2$\sqrt{6}$,BC=2$\sqrt{10}$.则∠A+∠CBD=(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为线段DD1,BD的中点.
(1)求异面直线EF与BC所成的角的正切值.
(2)求三棱锥C-B1D1F的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,棱长为1的正方体ABCD-A1B1C1D1中,P为线段A1B上的动点,则下列结论错误的是(  )
A.DC1⊥D1P
B.若直线l是平面ABCD内的直线,直线m是平面DD1C1C内的直线,若l与m相交,则交点一定在直线CD上
C.若P为A1B上动点,则AP+PD1的最小值为$\frac{\sqrt{2}+\sqrt{6}}{2}$
D.∠PAD1最小为$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(x-1,2),$\overrightarrow{b}$=(4,y),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则点P(x,y)到原点的距离的最小值为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=1-2acosx-2sin2x的最小值为g(a)(a∈R).
(1)当a=2时,求函数f(x)的值域;
(2)当a=2时,x∈[0,$\frac{π}{2}$],函数f(x)≤m恒成立,求m的取值范围;
(3)求g(a).

查看答案和解析>>

同步练习册答案