精英家教网 > 高中数学 > 题目详情
(本题满分10分)设,是否存在整式,使得
对n≥2的一切自然数都成立?并试用数学
归纳法证明你的结论.
解:假设存在整式,使得对n≥2的一切自然数都成立,则
当n=2时有,又∵,∴;
当n=3时有,又∵,
;……, 猜想:g(n)=n(n≥2),
下面用数学归纳法加以证明:
(1)当n=2时,已经得到证明.
(2)假设当n=k(k≥2,k∈N)时,结论成立,即
存在g(k)=k,使得对k≥2的一切自然数都成立成立.则当n=k+1时,
,
又∵,
,
∴当n=k+1时,命题成立.
由(1)(2)知,对一切n(n≥2,n∈N*)有=n,使得
都成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
数列满足.
(Ⅰ)计算,并由此猜想通项公式
(Ⅱ)用数学归纳法证明(Ⅰ)中的猜想.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分) 函数列满足,=
(1)求
(2)猜想的解析式,并用数学归纳法证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)设f(n)=1+,当n≥2,nN*时,用数学归纳法证明:n+f(1)+f(2)+…+f(n-1)=nf(n)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知
(1)当时,试比较的大小关系;
(2)猜想的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)设,其中为正整数.
(1)求的值;
(2)猜想满足不等式的正整数的范围,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

证明:能被整除

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明,在验证成立时,左边计算所得的项是

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明:()的过程中,从“”左端需增加的代数式为         (      )
       

查看答案和解析>>

同步练习册答案