精英家教网 > 高中数学 > 题目详情
5.已知双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线方程为y=±$\frac{1}{2}$x,则双曲线C的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{6}}{2}$D.$\sqrt{6}$

分析 根据题意,由双曲线的方程分析可得其焦点在x轴上,进而可得渐近线方程,结合题意可得有$\frac{b}{a}$=$\frac{1}{2}$,即a=2b,由双曲线的几何性质分析可得c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,由离心率的计算公式可得答案.

解答 解:根据题意,双曲线的方程为$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1,其焦点在y轴上,其渐近线方程为y=±$\frac{a}{b}$x,
又由其渐近线方程为y=±$\frac{1}{2}$x,
则有$\frac{a}{b}$=$\frac{1}{2}$,即b=2a,
c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,
则其离心率e=$\frac{c}{a}$=$\sqrt{5}$;
故选:B.

点评 本题考查双曲线的几何性质,涉及双曲线的渐近线、离心率的计算,关键是求a,c的关系,注意分析双曲线的焦点的位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某程序框图如图所示,该程序运行后若输出S的值是2,则判断框内可填写(  )
A.i≤2015?B.i≤2016?C.i≤2017?D.i≤2018?

查看答案和解析>>

科目:高中数学 来源:2017届湖南衡阳县四中高三9月月考数学(文)试卷(解析版) 题型:选择题

设函数,若,则实数等于( )

A. B. C.2 D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数y=9-x2的导数(导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,AD=4,BD=8,平面PAD⊥平面ABCD,AB=2DC=4$\sqrt{5}$.
(Ⅰ)设M是线段PC上的一点,证明:平面BDM⊥平面PAD
(Ⅱ)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数f(x)=$\sqrt{2}$sin2x-$\sqrt{2}$cos2x+1的图象向左平移$\frac{π}{4}$个单位,再向下平移1个单位,得到函数y=g(x)的图象,则下列关予函数y=g(x)的说法错误的是(  )
A.函数y=g(x)的最小正周期为π
B.函数y=g(x)的图象的一条对称轴为直线x=$\frac{π}{8}$
C.${∫}_{0}^{\frac{π}{2}}$g(x)dx=$\sqrt{2}$
D.函数y=g(x)在区间[$\frac{π}{12}$,$\frac{5π}{8}$]上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在如图所示的几何体中,A1B1C1-ABC是直三棱柱,四边形ABDC是梯形,AB∥CD,且$AB=BD=\frac{1}{2}CD=2$,∠BDC=60°,E是C1D的中点.
(Ⅰ)求证:AE∥平面BB1D;
(Ⅱ)当A1A为何值时,平面B1C1D与平面ABDC所成二面角的大小等于45°?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a>0,若关于x,y的不等式组$\left\{\begin{array}{l}{ax-y+2≥0}\\{x+y-2≥0}\\{x-2≤0}\end{array}\right.$,表示的可行域与圆(x-2)2+y2=9存在公共点,则z=x+2y的最大值的取值范围为(  )
A.[8,10]B.(6,+∞)C.(6,8]D.[8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)是定义在R上的奇函数,当x>0时,f(x)是幂函数,且图象过点$(3,\sqrt{3})$,则f(x)在R上的解析式为$f(x)=\left\{\begin{array}{l}\sqrt{x},x≥0\\-\sqrt{-x},x<0\end{array}\right.$.

查看答案和解析>>

同步练习册答案