精英家教网 > 高中数学 > 题目详情
已知F1,F2是双曲线E的两个焦点,以线段F1F2为直径的圆与双曲线的一个公共点是M,若∠MF1F2=30°,则双曲线E的离心率是
 
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:根据以线段F1F2为直径的圆与双曲线的一个公共点是M,可得MF1⊥MF2,利用∠MF1F2=30°,可得|MF1|,利用双曲线的定义及离心率的定义,可求双曲线E的离心率.
解答: 解:由题意,MF1⊥MF2,设|F1F2|=2c,
∵∠MF1F2=30°,
∴|MF1|=
3
c
,|MF2|=c,

∴2a=MF1-MF2=(
3
-1)c.
c
a
=
2
3
-1
=
3
+1

故答案为:
3
+1
点评:本题考查了双曲线的性质以及定义,解题过程要灵活运用双曲线的定义,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的图象在y轴上的截距为1,它在y轴右侧的第一个最大值点和最小值点分别为(x0,2)和(x0+π,-2).
(1)求f(x)的解析式;
(2)若?m∈R,?x∈[-
π
3
π
3
],使f(x)≤
m
2
 
-3m-2
成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在空间直角坐标系O-xyz中,正四棱锥P-ABCD的侧棱长与底边长都为3
2
,点M,N分别在PA,BD上,且
PM
PA
=
BN
BD
=
1
3

(1)求证:MN⊥AD;
(2)求MN与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

7个人排成一行,甲、乙都与丙不相邻,有
 
种不同排法.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A、B、C、D是空间四个不同的点,在下列命题中,不正确的是
 
(填序号).
①若AC与BD共面,则AD与BC共面;
②若AC与BD是异面直线,则AD与BC是异面直线;
③AB=AC,DB=DC,则AD=BC;
④AB=AC,DB=DC,则AD⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列几个命题
①方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0.
②函数y=
x2-1
+
1-x2
是偶函数,但不是奇函数.
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1].
④设函数y=f(x)定义域为R,则函数y=f(1-x)与y=f(x-1)的图象关于y轴对称.
⑤设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(-
5
2
)=-
1
2

其中正确的有
 
(把你认为正确的序号全写上).

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
e1
e2
不共线,
AB
=3(
e1
+
e2
),
CB
=
e2
-
e1
CD
=2
e1
+
e2
,给出下列结论:
①A,B,C共线;
②A,B,D共线;
③B,C,D共线;
④A,C,D共线,
其中所有正确结论的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=|x|与函数y=(
x
)2
表示同一个函数;
②正比例函数的图象一定通过直角坐标系的原点;
③若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为1<x1<x2
④已知集合P={a,b},Q={-1,0,1},则映射f:P→Q中满足f(b)=0的映射共有3个.其中正确命题的序号是
 
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容易为4的样本,已知7号,33号,46号同学在样本中,那么样本另一位同学的编号为23;
②一组数据1、2、3、4、5的平均数、众数、中位数相同;
③一组数据a、0、1、2、3,若该组数据的平均值为1,则样本标准差为2;
④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为
?
y
=ax+b中,b=2,
.
x
=1,
.
y
=3,则a=1;
⑤如图是根据抽样检测后得出的产品样本净重(单位:克)数据绘制的频率分布直方图,已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克,并且小于104克的产品的个数是90.
其中真命题为(  )
A、①②④B、②④⑤
C、②③④D、③④⑤

查看答案和解析>>

同步练习册答案