5£®ÔÚ¡÷ABCÖУ¬Èý¸öÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÔòÏÂÁи÷ʽ´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®ÈôsinA+cosA£¼1£¬Ôò¡÷ABCΪ¶Û½ÇÈý½ÇÐÎ
B£®Èôa2+b2£¼c2£¬Ôò¡÷ABCΪ¶Û½ÇÈý½ÇÐÎ
C£®Èô$\overrightarrow{AB}$•$\overrightarrow{BC}$£¼0£¬Ôò¡÷ABCΪ¶Û½ÇÈý½ÇÐÎ
D£®ÈôA¡¢BΪÈñ½ÇÇÒcosA£¾sinB£¬Ôò¡÷ABCΪ¶Û½ÇÈý½ÇÐÎ

·ÖÎö ¶ÔA£¬ÀûÓÃÁ½½ÇºÍÕýÏÒ¹«Ê½¼°ÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔ£¬ÅжϽÇAÊÇ·ñ´óÓÚÖ±½Ç¼´¿É£»
¶ÔB£¬ÀûÓÃÓàÏÒ¶¨ÀíÅжϽÇCÊÇ·ñΪ¶Û½Ç£»
¶ÔC£¬ÀûÓÃÏòÁ¿ÊýÁ¿»ý¹«Ê½£¬ÅжϽÇBÊÇ·ñΪ¶Û½Ç£»
¶ÔD£¬ÏÈ»¯Í¬ÃûÈý½Çº¯Êý£¬ÔÙÀûÓõ¥µ÷ÐÔ·ÖÎöÅжϼ´¿É£®

½â´ð ½â£ºAÑ¡Ïî¡ßsinA+cosA=$\sqrt{2}$sin£¨A+$\frac{¦Ð}{4}$£©£¼1£¬¡àsin£¨A+$\frac{¦Ð}{4}$£©£¼$\frac{\sqrt{2}}{2}$£¬¡ß$\frac{¦Ð}{4}$£¼A+$\frac{¦Ð}{4}$£¼¦Ð+$\frac{¦Ð}{4}$£¬¡àA+$\frac{¦Ð}{4}$£¾$\frac{3¦Ð}{4}$£¬¡àA£¾$\frac{¦Ð}{2}$£¬¹ÊAÕýÈ·£»
BÑ¡ÏcosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$£¼0£¬¡àC£¾$\frac{¦Ð}{2}$£¬¹ÊBÕýÈ·£»
CÑ¡Ï¡ß$\overrightarrow{AB}$•$\overrightarrow{BC}$=-$\overrightarrow{BA}$•$\overrightarrow{BC}$£¬¡à$\overrightarrow{BA}$•$\overrightarrow{BC}$=|$\overrightarrow{BA}$||$\overrightarrow{BC}$|cosB£¾0£¬¡àB£¼$\frac{¦Ð}{2}$£¬¹Ê²»ÄÜÈ·¶¨Èý½ÇÐÎΪ¶Û½ÇÈý½ÇÐΣ¬¹ÊC´íÎó£»
DÑ¡Ï¡ßcosA=sin£¨$\frac{¦Ð}{2}$-A£©£¾sinB£¬ÓÖ¡ßÈôA¡¢BΪÈñ½Ç£¬¡à$\frac{¦Ð}{2}$£¾B⇒A+B£¼$\frac{¦Ð}{2}$£¬¡àC£¾$\frac{¦Ð}{2}$£¬¹ÊDÕýÈ·£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ìâ½èÖú¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬¿¼²éÈý½ÇÐÎÐÎ×´µÄÅжϣ¬ÒÔ¼°ÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨Ò壬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÉèʵÊýx£¬y£¬z¾ù´óÓÚÁ㣬ÇÒx+2y+3z=1£¬Ôòx2+y2+z2µÄ×îСֵÊÇ$\frac{1}{14}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÏòÁ¿$\overrightarrow m=£¨sinx£¬cosx£©£¬\overrightarrow n=£¨cosx£¬\sqrt{3}cosx£©$£¬º¯Êýf£¨x£©=$\overrightarrow m•\overrightarrow n-\frac{{\sqrt{3}}}{2}$£¬x¡ÊR£®
£¨1£©Èôf£¨x£©=$\frac{1}{3}$£¬Çó$cos£¨2x+\frac{5}{6}¦Ð£©$µÄÖµ£»
£¨2£©¡÷ABCµÄÄÚ½ÇAÂú×㣺f£¨A£©=$\frac{1}{2}£¬A¡Ê£¨0£¬\frac{¦Ð}{2}£©$£¬Èôb=$\sqrt{2}$£¬c=1£¬Çó¡÷ABCÍâ½ÓÔ²µÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖª£¨1+2$\sqrt{x}$£©nµÄÕ¹¿ªÊ½ÖУ¬Ä³Ò»ÏîµÄϵÊýÊÇËüǰһÏîϵÊýµÄ2±¶£¬¶øÓÖµÈÓÚËüºóÒ»ÏîϵÊýµÄ$\frac{5}{6}$£®
£¨1£©ÇóÕ¹¿ªºóËùÓÐÏîµÄϵÊýÖ®ºÍ¼°ËùÓÐÏîµÄ¶þÏîʽϵÊýÖ®ºÍ£»
£¨2£©ÇóÕ¹¿ªÊ½ÖеÄÓÐÀíÏ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªF1¡¢F2ÊÇÍÖÔ²$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1µÄÁ½¸ö½¹µã£¬PÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã
£¨1£©¡ÏF1PF2=$\frac{¦Ð}{3}$£¬Çó¡÷F1PF2µÄÃæ»ý
£¨2£©Çó|PF1||PF2|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Ò»ÎïÌåÑØÖ±ÏßÒÔv£¨t£©=8t-2t2£¨tµÄµ¥Î»Îª£ºÃ룬vµÄµ¥Î»Îª£ºÃ×/Ã룩µÄËÙ¶È×÷±äËÙÖ±ÏßÔ˶¯£¬Çó¸ÃÎïÌå´Óʱ¿Ìt=0ÃëÖÁʱ¿Ì t=5Ãë¼äÔ˶¯µÄ·³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=2sin£¨¦Øx£©£¬ÆäÖг£Êý¦Ø£¾0£®
£¨1£©Èôy=f£¨x£©ÔÚ$[-\frac{¦Ð}{4}£¬\frac{2¦Ð}{3}]$Éϵ¥µ÷µÝÔö£¬Ç󦨵Äȡֵ·¶Î§£»
£¨2£©Áî¦Ø=2£¬½«º¯Êýy=f£¨x£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬ÔÙÏòÉÏÆ½ÒÆ1¸öµ¥Î»£¬µÃµ½º¯Êýy=g£¨x£©µÄͼÏó£¬Çø¼ä[a£¬b]£¨a£¬b¡ÊRÇÒa£¼b£©Âú×㣺y=g£¨x£©ÔÚ[a£¬b]ÉÏÖÁÉÙº¬ÓÐ30¸öÁãµã£¬ÔÚËùÓÐÂú×ãÉÏÊöÌõ¼þµÄ[a£¬b]ÖУ¬Çób-aµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®£¨1£©ÒÑÖª$¦Á£¬¦Â¡Ê£¨\frac{3¦Ð}{4}£¬¦Ð£©£¬sin£¨¦Á+¦Â£©=-\frac{3}{5}£¬sin£¨¦Â-\frac{¦Ð}{4}£©=\frac{12}{13}$£¬Çó$cos£¨¦Á+\frac{¦Ð}{4}£©$µÄÖµ£®
£¨2£©Çó$sin{50}^{?}£¨1+\sqrt{3}tan{10}^{?}£©$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÈýÀâÖùABC-A1B1C1µÄ²àÀâÓëµ×Ãæ´¹Ö±£¬AA1=AB=AC=1£¬AB¡ÍAC£¬NÊÇBCµÄÖе㣬µãPÔÚA1B1ÉÏ£¬ÇÒÂú×ã$\overrightarrow{{A_1}P}$=¦Ë$\overrightarrow{{A_1}{B_1}}$£¬Ö±ÏßPNÓëÆ½ÃæABCËù³É½Ç¦ÈµÄÕýÇÐֵȡ×î´óֵʱ¦ËµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{{\sqrt{2}}}{2}$C£®$\frac{{\sqrt{3}}}{2}$D£®$\frac{{2\sqrt{5}}}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸