| A. | 2 | B. | -2 | C. | 1 | D. | -4 |
分析 由已知展开($\overrightarrow{a}$+$\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=-12求得$\overrightarrow{a}•\overrightarrow{b}$,再由向量在向量方向上投影的概念得答案.
解答 解:由|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,且($\overrightarrow{a}$+$\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=-12,
得$2|\overrightarrow{a}{|}^{2}+\overrightarrow{a}•\overrightarrow{b}-|\overrightarrow{b}{|}^{2}=-12$,即$2×4+\overrightarrow{a}•\overrightarrow{b}-16=-12$,
∴$\overrightarrow{a}•\overrightarrow{b}=-4$.
则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|}$=$\frac{-4}{2}=-2$.
故选:B.
点评 本题考查平面向量的数量积运算,考查了向量在向量方向上投影的概念,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com