精英家教网 > 高中数学 > 题目详情
17.已知函数$f(x)=\left\{\begin{array}{l}2-lgx,x>1\\{10^x},x≤1\end{array}\right.$,则$f(f(\frac{1}{2}))$=(  )
A.2B.$\frac{1}{2}$C.$\frac{3}{2}$D.-2

分析 推导出f($\frac{1}{2}$)=$1{0}^{\frac{1}{2}}$=$\sqrt{10}$,从而$f(f(\frac{1}{2}))$=f($\sqrt{10}$)=2-lg$\sqrt{10}$,由此能求出结果.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}2-lgx,x>1\\{10^x},x≤1\end{array}\right.$,
∴f($\frac{1}{2}$)=$1{0}^{\frac{1}{2}}$=$\sqrt{10}$,
∴$f(f(\frac{1}{2}))$=f($\sqrt{10}$)=2-lg$\sqrt{10}$=2-$\frac{1}{2}$=$\frac{3}{2}$.
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如表提供了某厂节能降耗技术改造后生产甲产品过程记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:
x3456
y2.5344.5
(1)已知产量x和能耗y呈线性关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.
(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式;$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\widehat{a}=\widehat{y}-\widehat{b}\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若把-570°写成2kπ+α(k∈Z,0≤α<2π)的形式,则α=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若二项式(2x+$\frac{a}{x}$)5的展开式中$\frac{1}{x}$的系数是40,则实数a=(  )
A.2B.$\root{5}{4}$C.1D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f1(x)=x$,\;{f_2}(x)=\frac{1}{x}\;,\;{f_3}(x)={x^3}\;,\;{f_4}(x)=\sqrt{x}$,中,奇函数的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在矩形ABCD中,已知AB=2,AD=a(a>2),E,F,G,H分别是AD,AB,BC,CD上的点,且AE=AF=CG=CH,当AE取何值时,四边形EFGH的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.给出下面三个类比结论:
①向量$\overrightarrow{a}$,有|$\overrightarrow{a}$|2=$\overrightarrow{a}$2;类比复数z,有|z|2=z2
②实数a,b有(a+b)2=a2+2ab+b2;类比向量$\overrightarrow{a}$,$\overrightarrow{b}$,有($\overrightarrow{a}$$+\overrightarrow{b}$)2=$\overrightarrow{a}$2$+2\overrightarrow{a}$$•\overrightarrow{b}$$+\overrightarrow{b}$2
③实数a,b有a2+b2=0,则a=b=0;类比复数z1,z2,有z12+z22=0,则z1=z2=0
其中类比结论正确的命题个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知定义在R上的函数f(x)是奇函数,若f(-2)+f(0)+f(3)=2,则f(2)-f(3)的值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足($\overrightarrow{a}$+$\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=-12,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为(  )
A.2B.-2C.1D.-4

查看答案和解析>>

同步练习册答案