精英家教网 > 高中数学 > 题目详情
7.如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,且AC=BC=CC1=2,M是AB1与A1B的交点,N是B1C1的中点.
(Ⅰ)求证:MN∥平面ACC1A1
 (Ⅱ)求三棱锥N-A1BC的体积.

分析 (Ⅰ)连接MN,AC1,然后由三角形的中位线定理得到MN∥AC1,再由线面平行的判定定理得答案;
(Ⅱ)把三棱锥N-A1BC的体积转化为A1-BNC的体积求解.

解答 (Ⅰ)证明:如图,

连接MN,AC1,∵M、N分别为AB1、B1C1 的中点,
∴MN∥AC1
∵MN?面AA1C1C,AC1?面AA1C1C,
∴MN∥平面ACC1A1
(Ⅱ)解:∵三棱柱ABC-A1B1C1为直三棱柱,
∴四边形BB1C1C为矩形,
N为B1C1的中点,则${S}_{△BNC}=\frac{1}{2}×2×2=2$,
又AC⊥BC,AC⊥CC1,∴AC⊥面BB1C1C,
则${V}_{N-{A}_{1}BC}={V}_{{A}_{1}-BNC}$=$\frac{1}{3}{S}_{△BNC}•{A}_{1}{C}_{1}=\frac{1}{3}×2×2=\frac{4}{3}$.
故答案为:$\frac{4}{3}$.

点评 本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.当-1<m<1时,复数z=$\frac{-1+i}{m+i}$(i为虚数单位)在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,AB是半径为1的圆的直径,过点A,B分别引弦AD和BE,相交于点C,过点C作CF⊥AB,垂足为点F.已知∠CAB=30°,∠DCB=60°.
(1)求∠EAB的大小;
(2)求AC•AD+BC•BE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的点到它的两个焦点的距离之和为4,以椭圆C的短轴为直径的圆O经过这两个焦点,点A,B分别是椭圆C的左、右顶点.
(Ⅰ)求圆O和椭圆C的方程;
(Ⅱ)已知P,Q分别是椭圆C和圆O上的动点(P,Q位于y轴两侧),且直线PQ与x轴平行,直线AP,BP分别与y轴交于点M,N.求证:∠MQN为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\frac{1}{2}$,点M在椭圆C上,点M到椭圆C的两个焦点的距离之和是4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若椭圆C1的方程为$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1(m>n>0),椭圆C2的方程为$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=λ(λ>0,且λ≠1),则称椭圆C2是椭圆C1的λ倍相似椭圆.已知椭圆C2是椭圆C的3倍相似椭圆.若椭圆C的任意一条切线l交椭圆C2于M,N两点,O为坐标原点,试研究当切线l变化时△OMN面积的变化情况,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设椭圆中心在坐标原点,A(4,0),B(0,2)是它的两个顶点,直线y=kx(k>0)与AB相交于点D,与椭圆相交于E、F两点.
(Ⅰ)若$\overrightarrow{ED}$=6$\overrightarrow{DF}$,求k的值;
(Ⅱ)求四边形AEBF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若x、y满足(x-2)2+(y-2)2=1,则|$\sqrt{3}$x+y-1|-2$\sqrt{(x-\sqrt{3})^{2}+(y-2)^{2}}$的最大值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为B(0,1),过焦点且垂直于长轴的弦长为$\sqrt{2}$,直线l交椭圆C1于M,N两点.
(Ⅰ) 求椭圆C1的方程;
(Ⅱ)若△BMN的重心恰好为椭圆的右焦点F,求直线l的方程;
(Ⅲ)直线l与椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=λ(λ∈R,λ>1)交于P,Q两点(如图),求证|PM|=|NQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点F2是抛物线y2=4x的焦点,过点F2垂直于x轴的直线被椭圆C所截得的线段长度为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设动直线l:y=kx+m与椭圆C有且只有一个公共点 P,且与直线x=2相交于点Q.请问:在x轴上是否存在定点 M,使得$\overrightarrow{{M}{P}}•\overrightarrow{{M}Q}$为定值?若存在,求出点 M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案