精英家教网 > 高中数学 > 题目详情
20.设直线x-3y+m=0(m≠0)与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线分别交于点A,B,若点P(-m,0)满足|PA|=|AB|,则该双曲线的渐近线方程为y=±x.

分析 先求出A,B的坐标,可得AB中点坐标,利用点P(-m,0)满足|PA|=|PB|,可得$\frac{\frac{3m{b}^{2}}{9{b}^{2}-{a}^{2}}-0}{\frac{m{a}^{2}}{9{b}^{2}-{a}^{2}}+m}$=-3,从而可求双曲线的渐近线方程.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线方程为y=±$\frac{b}{a}$x,则
与直线x-3y+m=0联立,可得A($\frac{ma}{3b-a}$,$\frac{mb}{3b-a}$),B(-$\frac{ma}{3b+a}$,$\frac{mb}{3b+a}$),
∴AB中点坐标为($\frac{m{a}^{2}}{9{b}^{2}-{a}^{2}}$,$\frac{3m{b}^{2}}{9{b}^{2}-{a}^{2}}$),
∵点P(-m,0)满足|PA|=|PB|,
∴$\frac{\frac{3m{b}^{2}}{9{b}^{2}-{a}^{2}}-0}{\frac{m{a}^{2}}{9{b}^{2}-{a}^{2}}+m}$=-3,
∴a=b,
∴双曲线的渐近线方程为y=±x.
故答案为:y=±x.

点评 本题考查双曲线的渐近线方程,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.椭圆 $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1内一点P(4,2),过点P的弦AB恰好被点P平分,则直线AB的方程为x+2y-8=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.河南省2013级高中学业水平考试在2015年1月16日至18日共考试三天,需考语文、数学、英语、物理、化学、生物、政治、历史、地理九门学科,若语文、数学、英语必须安排在下午,每天上午安排其余的六门学科,且每天上午考两门,下午考一门,问有多少种安排考试顺序的方法(  )
A.540B.720C.3240D.4320

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知tanα,tanβ是关于x的方程x2+(logaM+logbM)x-logaM•logbM=0两个根,其中a,b,M均不为1的正数,若sinαcosβ+cosαsinβ=2sinαsinβ,则a,b,M满足的关系是(  )
A.$\frac{a+b}{2}$=MB.$\sqrt{ab}$=MC.a+b=MD.ab=M

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆C:x2+y2-2x-2y+1=0,其半径r=1,圆心C到直线x-y=2的距离为$\sqrt{2}$,圆C上的点到直线x-y=2的最小值为$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)是R上的奇函数,且当x∈(-∞,0]时,f(x)=-xlg(2m-x+$\frac{1}{2}$).当x>0时,不等式f(x)<0恒成立,则m的取值范围是(  )
A.(-∞,-1)B.(-1,1]C.[0,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知i为虚数单位,复数z1=3-ai,z2=1+2i,若$\frac{{z}_{1}}{{z}_{2}}$复平面内对应的点在第四象限,则实数a的取值范围为$-6<a<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则点C到平面BC1D的距离等于(  )
A.$\sqrt{6}$B.$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{6}}{3}$D.$\frac{\sqrt{6}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=x2-1,则f(1)=(  )
A.1B.0C.-1D.2

查看答案和解析>>

同步练习册答案