精英家教网 > 高中数学 > 题目详情
20.下列计算正确的是(  )
A.$\sqrt{{{({m-n})}^2}}=m-n$B.log23×log25=log215
C.210-29=29D.${({-\frac{125}{27}})^{\frac{2}{3}}}=-\frac{25}{9}$

分析 利用指数幂与对数的运算性质即可判断出正误.

解答 解:A.m<n时不成立,不正确;
B.log23×log25=$\frac{lg3}{lg2}•\frac{lg5}{lg2}$≠log215,不正确.
C.210-29=2•29-29=29
D.$(-\frac{125}{27})^{\frac{2}{3}}$=$(\frac{5}{3})^{3×\frac{2}{3}}$=$\frac{25}{9}$,因此不正确.
故选:C.

点评 本题考查了指数幂与对数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.关于x的方程x2+x+q=0(q∈[0,1])有实根的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}与{bn}满足:a1+a2+a3+…+an=log2bn(n∈N*),且数列{an}为等比数列,a1=2,b3=64b2
(1)求an和bn
(2)设cn=(an+n+1)•2an-2,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.圆心为C的圆经过点A(0,2)和点B(2,0),且圆心C在直线l1:2x-y-4=0上.
(Ⅰ) 求圆C的方程;
(Ⅱ) 求直线l2:3x+4y-8=0被圆C截得的弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在直角梯形ABCD中,AB⊥AD,AB=AD=2,CD=4,将三角形ABD沿BD翻折,使面ABD⊥面BCD.
(Ⅰ) 求线段AC的长度;
(Ⅱ) 求证:AD⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图是幂函数$y={x^{α_i}}$(αi>0,i=1,2,3,4,5)在第一象限内的图象,其中α1=3,α2=2,α3=1,${α_4}=\frac{1}{2}$,${α_5}=\frac{1}{3}$,已知它们具有性质:
①都经过点(0,0)和(1,1);   ②在第一象限都是增函数.
请你根据图象写出它们在(1,+∞)上的另外一个共同性质:α越大函数增长越快.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设Sn为等比数列{an}的前n项和,且8a3+a6=0,则$\frac{S_4}{S_2}$=(  )
A.-11B.-8C.5D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知对数函数f(x)图象经过点(8,3)
(I)求函数f(x)的解析式;
(II)若f(x)>1,求x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x3-bx2-4,x∈R,则下列命题正确的是(  )
A.当b>0时,?x0<0,使得f(x0)=0
B.当b<0时,?x<0,都有f(x)<0
C.f(x)有三个零点的充要条件是b<-3
D.f(x)在区间(0.+∞)上有最小值的充要条件是b<0

查看答案和解析>>

同步练习册答案