精英家教网 > 高中数学 > 题目详情
数列{an}满足递推式an=3an-1+3n-1(n≥2),且a1=5.
(Ⅰ)求a2,a3的值;
(Ⅱ)若存在实数λ使{
an
3n
}为等差数列,求λ的值及{an}的通项公式;
(Ⅲ)求{an}的前n项和Sn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由数列{an}满足递推式分别取n=2,3,利用递推思想能求出a2,a3的值.
(Ⅱ)设
an
3n
=xn+y
,从而得到an=(xn+y)•3n,由a1=5,a2=23,a3=95,利用待定系数法能求出λ的值及{an}的通项公式.
(Ⅲ)由an=(n+
1
2
)•3n+
1
2
,利用错位相减法能求出{an}的前n项和Sn
解答: 解:(Ⅰ)∵数列{an}满足递推式an=3an-1+3n-1(n≥2),且a1=5,
a2=3×5+32-1=23,
a3=3×23+33-1=95.
(Ⅱ)∵{
an
3n
}为等差数列,∴设
an
3n
=xn+y

an=(xn+y)•3n
又由a1=5,a2=23,a3=95,
5=a1=(x+y)•3-λ
23=a2=(2x+y)•9-λ
95=a3=(3x+y)•27-λ
,解得λ=-
1
2
,x=1,y=
1
2

an=(n+
1
2
)•3n+
1
2

an=(n+
1
2
)•3n+
1
2

λ=
1
2

(Ⅲ)∵an=(n+
1
2
)•3n+
1
2

Tn=(1+
1
2
)•31+(2+
1
2
)•32+…+(n+
1
2
)•3n
,①
3Tn=(1+
1
2
)•32+(2+
1
2
)•32+…+
(n+
1
2
)•3n+1
,②
-2Tn=
9
2
+32+33+…+3n-(n+
1
2
)•3n+1

=
9
2
+
32(1-3n-1)
1-3
-(n+
1
2
)•3n+1
=-n•3n+1
Tn=
1
2
n•3n+1

∴{an}的前n项和Sn=Tn+
n
2
=
n
2
(3n+1+1)
点评:本题考查数列的通项公式和前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正四棱锥P-ABCD的底面边长是2,侧棱长是
6
,且它的五个顶点都在同一个球面上,则此球的半径是(  )
A、1
B、2
C、
3
2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

圆心(1,-4),且过点(4,0)的圆的标准方程为(  )
A、(x-1)2+(y+4)2=25
B、(x+1)2+(y-4)2=25
C、(x-1)2+(y+4)2=5
D、(x+1)2+(y-4)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量是
a
b
c
满足
a
+
b
+
c
=
0
,(|
b
|
a
-|
a
|•
b
c
=0,且2(
a
b
)=|
a
|•|
b
|,则由向量
a
b
c
构成的三角形的三个内角分别为(  )
A、30°,60°,90°
B、45°,45°,90°
C、30°,30°,120°
D、60°,60°,60°

查看答案和解析>>

科目:高中数学 来源: 题型:

若过点P(2,1)的直线l与圆C:x2+y2+2x-4y-11=0相交于两点A、B,且∠ACB=90°(其中C为圆心).
(Ⅰ)求直线l的方程,
(Ⅱ)求经过点P,C的圆中面积最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,E、F分别为BC和PC的中点.
(1)求证:EF∥平面PBD;
(2)如果AB=PD,求EF与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
(1)若PD=AD,求PC与面AC所成的角
(2)求证:PC∥平面EBD
(3)求证:平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

在二项式(x-2y)7的展开式中,
(Ⅰ)求二项式系数之和;
(Ⅱ)求各项系数之和;
(Ⅲ)求奇数项系数之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,E,F,M,N分别是A′B′,BC,C′D′,B′C′的中点.
(1)求证:平面MNF⊥平面ENF.
(2)求二面角M-EF-N的余弦值.

查看答案和解析>>

同步练习册答案