| A. | $\frac{5}{13}$ | B. | -$\frac{5}{13}$ | C. | $\frac{12}{13}$ | D. | -$\frac{12}{13}$ |
分析 利用任意角的三角函数的定义求得sinφ的值,利用正弦函数的图象的特征求得ω,再利用诱导公式求得f($\frac{π}{4}$)的值.
解答 解:∵角φ的终边经过点P(5,-12),由三角函数定义知:$sinφ=-\frac{12}{13}$,
由已知存在x1,x2使得f(x1)≤f(x)≤f(x2)成立,且|x1-x2|的最小值为$\frac{π}{4}$,有 $T=\frac{π}{2}$=$\frac{2π}{ω}$,
∴ω=4,∴f(x)=sin(4x+φ),故f($\frac{π}{4}$)=sin(π+φ)=-sinφ=$\frac{12}{13}$,
故选:C.
点评 本题主要考查任意角的三角函数的定义,诱导公式,正弦函数的图象的特征,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{7}{2}$ | B. | $\frac{7}{2}$ | C. | $-\frac{7}{2}i$ | D. | $\frac{7}{2}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 2 | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com