如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
![]()
(1)求证:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)设点M是线段BD上一个动点,试确定M的位置,使得AM∥平面BEF,并证明你的结论.
科目:高中数学 来源: 题型:
如图10-8,在三棱锥S—ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2
,M、N分别为AB、SB的中点。
(1)证明:AC⊥SB;
(2)求二面角N—CM—B的大小;
(3)求点B到平面CMN的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:
如图11-7,四棱锥P—ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E、F分别为CD、PB的中点。
![]()
(1)求证EF⊥平面PAB;
(2)设AB=
BC,求AC与平面AEF所成的角的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:
某同学参加科普知识竞赛,需回答三个问题竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响。
(1)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望;
(2)求这名同学总得分不为负分(即ξ≥0)的概率。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com