精英家教网 > 高中数学 > 题目详情
某高校自主招生考试中,所有去面试的考生全部参加了“语言表达能力”和“竞争与团队意识”两个科目的测试,成绩分别为A、B、C、D、E五个等级,某考场考生的两科测试成绩数据统计如图,其中“语言表达能力”成绩等级为B的考生有10人.
(Ⅰ)求该考场考生中“竞争与团队意识”科目成绩等级为A的人数;
(Ⅱ)已知等级A、B、C、D、E分别对应5分,4分,3分,2分,1分.
(i)求该考场学生“语言表达能力”科目的平均分;
(ii)求该考场共有10人得分大于7分,其中有2人10分,2人9分,6人8分,从这10人中随机抽取2人,求2人成绩之和的分布列和数学期望.
考点:离散型随机变量的期望与方差,收集数据的方法
专题:应用题,概率与统计
分析:(Ⅰ)由“语言表达能力”成绩等级为B的考生有10人,频率为0.25,可求考场中的人数,然后结合其频率可求;
(Ⅱ)(i)结合频率分布直方图可求该考场考生“竞争与团队意识”科目的平均分;
(ii)设两人成绩之和为ξ,则ξ的值可以为16,17,18,19,20,然后求出ξ去每个值对应的概率,即可求解出ξ的分布列及ξ的数学期望;
解答: 解:(Ⅰ)因为“语言表达能力”科目中成绩等级为B的考生有10人,所以该考场有10÷0.25=40人…(1分)
所以该考场考生中“竞争与团队意识”科目中成绩等级为A的人数为40×(1-0.375-0.375-0.15-0.025)=3…(3分)
(Ⅱ)(i)该考场考生“语言表达能力”科目的平均分为
40(1×0.2+2×0.1+3×0.375+4×0.25+5×0.075)
40
=2.9(7分)
(ii)设两人成绩之和为ξ,则ξ的值可以为16,17,18,19,20…(8分)
P(ξ=16)=
C
2
6
C
2
10
=
1
3
,P(ξ=17)=
C
1
2
C
1
6
C
2
10
=
4
15
,P(ξ=18)=
C
1
6
C
1
2
+
C
2
2
C
2
10
=
13
45

P(ξ=19)=
C
1
2
C
1
2
C
2
10
=
4
45
,P(ξ=20)=
C
2
2
C
2
10
=
1
45

所以ξ的分布列为
X 16 17 18 19 20
P
1
3
4
15
13
45
4
45
1
45
…(11分)
所以Eξ=16×
1
3
+17×
4
15
+18×
13
45
+19×
4
45
+20×
1
45
=
86
5

所以ξ的数学期望为
86
5
…(13分)
点评:本题主要考查了离散型随机变量的分布列及期望值的求解,解题的关键是熟练掌握基本公式的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为A,若常数C满足:对任意正实数?,总存在x∈A,使得0<|f(x)-C|<?成立,则称C为函数y=f(x)的“渐近值”.现有下列三个函数:①f(x)=
x
x-1
;②f(x)=
1,x为有理数
0,x为无理数
;③f(x)=
sinx
x
.其中以数“1”为渐近值的函数个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合R为实数集,集合M={x|0<x<2},N={x|x2-3x+2>0},则M∩∁RN=(  )
A、{x|0<x<1}
B、{x|1≤x<2}
C、{x|1<x<2}
D、{x|0<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
2
+y2=1,O为坐标原点,椭圆的右准线与x轴的交点是A.
(Ⅰ)点P在已知椭圆上,动点Q满足
OQ
=
OA
+
OP
,求动点Q的轨迹方程;
(Ⅱ)过椭圆右焦点F的直线与椭圆交于点M,N,求△AMN的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为棱DD1和AB上的点,则下列说法正确的是
 
(填上所有正确命题的序号)
(1)A1C⊥平面B1EF;
(2)在平面A1B1C1D1内总存在与平面B1EF平行的直线;
(3)△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;
(4)当E,F为中点时平面B1EF截该正方体所得的截面图形是五边形;
(5)当E,F为中点时,平面B1EF与棱AD交于点P,则AP=
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

春节期间,某商场进行促销活动,方案是:顾客每买满200元可按以下方式摸球兑奖:箱内装有标着数字20,40,60,80,1 00的小球各两个,顾客从箱子里任取三个小球,按三个小球中最大数字等额返还现金(单位:元),每个小球被取到的可能性相等.
(Ⅰ)若有三位顾客各买了268元的商品,求至少有二个返奖不少于80元的概率;
(Ⅱ)在(Ⅰ)的条件下,设返奖不少于80元的人数为ξ,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

近年来,随着地方经济的发展,劳务输出大省四川、河南、湖北、安徽等地的部分劳务人员选择了回乡就业,因而使得沿海地区出现了一定程度的用工荒.今年春节过后,沿海某公司对来自上述四省的务工人员进行了统计(如表):
省份 四川 河南 湖北 安徽
人数 45 60 30 15
为了更进一步了解员工的来源情况,该公司采用分层抽样的方法从上述四省务工人员中随机抽取50名参加问卷调查.
(1)从参加问卷调查的50名务工人员中随机抽取两名,求这两名来自同一省份的概率;
(2)在参加问卷调查的50名务工人员中,从来自四川、湖北两省的人员中随机抽取两名,用ξ表示抽得四川省务工人员的人数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂随机抽取处12件A型产品和18件B型产品,将这30件产品的尺寸编成如图所示的茎叶图(单位:cm),若尺寸在175cm以上(包括175cm)的产品定义为“标准件”,尺寸在175cm以下(不包括175cm)的产品定义为“非标准件”
(1)如果用分层抽样的方法从这30件“标准件”和“非标准件”中选取5件,再从这5件中选取2件,那么至少有一件是“标准件”的概率是多少?
(2)若从所有“标准件”中每次随机抽取1件,取后不放回,抽到“A型标准件”就结束,且抽取次数不能超过3次,用X表示抽取结束时抽到“B型标准件”的个数,试写出X的分布列,并求出X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,并满足:an=2an+1-an+2,a7=4-a3,则S9=
 

查看答案和解析>>

同步练习册答案