精英家教网 > 高中数学 > 题目详情
(本题满分12分)
如图的多面体是底面为平行四边形的直四棱柱ABCD—,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°。AB=2AD=2.∠BAD=60。.

(I)求证:BD⊥平面ADG;
(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.                                                              
(Ⅰ)证明:在△BAD中,AB=2AD=2,∠BAD=60°,

由余弦定理得,BD=

AD⊥BD                                 ----------------------------(2分)
又GD⊥平面ABCD
∴GD⊥BD,
GDAD=D,
∴BD⊥平面ADG……………………4分
(Ⅱ)解:以D为坐标原点,OA为x轴,OB为y轴,OG为z轴建立空间直角坐标系D—xyz
则有A(1,0,0),B(0,,0),G(0,0,1),E(0,
     -------------------------------(6分)
设平面AEFG法向量为

     --------------------------------(9分)
平面ABCD的一个法向量   -------------------------(10分)
设面ABFG与面ABCD所成锐二面角为
      ---------------------------------------(12
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

((本小题12分)
如图, 在三棱柱中, 底面, ,, 点D的中点.

(1) 求证;
(2) 求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本题满分14分)
在多面体中,点是矩形的对角线的交点,三角形是等边三角形,棱
(Ⅰ)证明:平面
(Ⅱ)设
与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图一,平面四边形关于直线对称,.把沿折起(如图二),使二面角的余弦值等于.对于图二,
(Ⅰ)求
(Ⅱ)证明:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)

如图,在中,分别为的中点,的延长线交。现将沿折起,折成二面角,连接.
(I)求证:平面平面
(II)当时,求二面角大小的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90º,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD。
(1)求直线FD与平面ABCD所成的角;
(2)求点D到平面BCF的距离;
(3)求二面角B—FC—D的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,直三棱柱中, AB=1,,∠ABC=60.
(1)证明:
(2)求二面角AB的余弦值。 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题12 分)如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD为正方形,E、F分别为AB、PC的中点.
①求证:EF⊥平面PCD;
②求平面PCB与平面PCD的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正四棱锥底面正方形的边长为4cm,高PO与斜高PE的夹角为,如图,求正四棱锥的表面积与体积

查看答案和解析>>

同步练习册答案