精英家教网 > 高中数学 > 题目详情
19.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{4}{3}$B.$\frac{{\sqrt{3}}}{2}$C.3D.2

分析 根据三视图判断几何体为三棱锥,且三棱锥的一个侧面垂直于底面,高为2,三棱锥的底面为直角三角形,矩直角边长分别为3、2,把数据代入棱锥的体积公式计算.

解答 解:由题意,几何体为三棱锥,且三棱锥的一个侧面垂直于底面,高为2,
三棱锥的底面为直角三角形,矩直角边长分别为3、2,
∴几何体的体积V=$\frac{1}{3}$×$\frac{1}{2}$×3×2×2=2.
故选:D.

点评 本题考查了由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及判断数据所对应的几何量.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.数列{an}的前n项和为Sn,a1=1,Sn=2an+1(n∈N*).
(1)试求a2,a3的值及数列{an}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.三种细菌A,B,C分别按照一定的比率繁殖,A在两天中繁殖为原来的2倍,B在三天中繁殖为原来的3倍,C在四天中繁殖为原来的4倍,设A,B,C三种细菌每天的繁殖速度分别记为a,b,c,则(  )
A.a>b>cB.b>a>cC.c=a>bD.b>a=c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.离心率为$\frac{{\sqrt{5}}}{5}$的椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别为F1(-1,0),F2(1,0),O为坐标原点.
(Ⅰ)求椭圆C的方程
(Ⅱ)若过点(1,0)的直线l与椭圆C交于相异两点M,N,且$\overrightarrow{OM}•\overrightarrow{ON}=-\frac{31}{9}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上有一点P(x0,y0),其中${x}_{0}^{2}$=$\frac{{a}^{2}{c}^{2}-{a}^{2}{b}^{2}}{{a}^{2}-{b}^{2}}$,求离心率的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{53}{3}$πB.$\frac{55}{3}$πC.18πD.$\frac{76}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,过点(-2a,0)作椭圆的切线l.
(1)求切线l的斜率;
(2)平行移动直线l(移动过程中不过坐际原点),设移动后的直线与椭圆交于不同两点A,B,点B关于原点对称的点为C,若△ABC面积的最大值是2$\sqrt{3}$,求椭圆方程和平移后的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个几何体的三视图如图所示,其中主视图和左视图是腰长为2的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是(  )
A.32$\sqrt{3}$πB.4$\sqrt{3}$πC.48πD.12π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点为F1、F2,P是椭圆上一点,M在PF1上,且满足$\overrightarrow{{F_1}M}=λ\overrightarrow{MP}$(λ∈R),PO⊥F2M,O为坐标原点.
(1)若椭圆方程为$\frac{x^2}{8}+\frac{y^2}{4}$=1,且P(2,$\sqrt{2}$),求点M的横坐标;
(2)若λ=2,求椭圆离心率e的取值范围.

查看答案和解析>>

同步练习册答案