精英家教网 > 高中数学 > 题目详情

【题目】某商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:

月平均气温x(℃)

17

13

8

2

月销售量y(件)

24

33

40

55

由表中数据算出线性回归方程 =bx+a中的b=﹣2,气象部门预测下个月的平均气温约为6℃,据此估计该商场下个月毛衣销售量约为( )件.
A.46
B.40
C.38
D.58

【答案】A
【解析】解:由表格得( )为:(10,38),
又( )在回归方程 =bx+a中的b=﹣2,
∴38=10×(﹣2)+a,
解得:a=58,
=﹣2x+58,
当x=6时, =﹣2×6+58=46.
故选:A.
根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a的值,可得线性回归方程,根据所给的x的值,代入线性回归方程,预报要销售的件数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,且an+1﹣an=2n , n∈N* , 若 +19≤3n对任意n∈N*都成立,则实数λ的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.
(1)求曲线C的方程;
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有 <0?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣a,g(x)=a|x|,a∈R.
(1)设F(x)=f(x)﹣g(x). ①若a= ,求函数y=F(x)的零点;
②若函数y=F(x)存在零点,求a的取值范围.
(2)设h(x)=f(x)+g(x),x∈[﹣2,2],若对任意x1 , x2∈[﹣2,2],|h(x1)﹣h(x2)|≤6恒成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】葫芦岛市某工厂党委为了研究手机对年轻职工工作和生活的影响情况做了一项调查:在厂内用简单随机抽样方法抽取了30名25岁至35岁的职工,对其“每十天累计看手机时间”(单位:小时)进行调查,得到茎叶图如下.所抽取的男职工“每十天累计看手机时间”的平均值和所抽取的女生 “每十天累计看手机时间”的中位数分别是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】葫芦岛市某高中进行一项调查:2012年至2016年本校学生人均年求学花销 (单位:万元)的数据如下表:

年份

2012

2013

2014

2015

2016

年份代号

1

2

3

4

5

年求学花销

3.2

3.5

3.8

4.6

4.9

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

(1)求 关于 的线性回归方程;
(2)利用(1)中的回归方程,分析2012年至2016年本校学生人均年求学花销的变化情况,并预测该地区2017年本校学生人均年求学花销情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧面A1ADD1⊥底面ABCD,D1A=D1D= ,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.

(1)求证:A1O∥平面AB1C;
(2)求锐二面角A﹣C1D1﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F、G分别为EB和AB的中点.

(1)求证:FD∥平面ABC;
(2)求二面角B﹣FC﹣G的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E、F分别为CD、DD1的中点,则异面直线EF与A1C1所成角的余弦值为

查看答案和解析>>

同步练习册答案