精英家教网 > 高中数学 > 题目详情
以椭圆
x2
25
+
y2
9
=1焦点为顶点,离心率为2的双曲线方程为
 
考点:双曲线的标准方程
专题:圆锥曲线的定义、性质与方程
分析:由题意推导出所求双曲线的顶点坐标为A1(-4,0),A2(4,0),
c
a
=
c
4
=2,由此能求出双曲线方程.
解答: 解:∵椭圆
x2
25
+
y2
9
=1的焦点为F1(-4,0),F2(4,0),
∴由题意知所求双曲线的顶点坐标为A1(-4,0),A2(4,0),
∵双曲线的离心率为2,
c
a
=
c
4
=2,
解得c=8,
∴b2=64-16=48,
∴所求双曲线方程为:
x2
16
-
y2
48
=1

故答案为:
x2
16
-
y2
48
=1
点评:本题考查双曲线方程的求法,是中档题,解题时要认真审题,要熟练掌握双曲线、椭圆的简单性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:
x=-3+2sinθ
y=2cosθ
(θ为参数),与x轴交与A、B两点,则|AB|等于(  )
A、6B、4C、2D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科学生做)若函数f(x)对任意x1,x2∈D,都有|f(x1)-f(x2)|≤|x1-x2|成立,则称f(x)为D上的“收缩”函数
(1)判断函数f(x)=
1
4
x2+
1
2
x
在[-1,1]上是否是“收缩”函数,并说明理由;
(2)是否存在k∈R,使得f(x)=
k
x+2
在[-1,+∞)上为“收缩”函数,若存在,求k的范围;若不存在,说明理由;
(3)若D=[0,1],且f(0)=f(1),且f(x)为“收缩”函数,问|f(x1)-f(x2)|≤
1
2
能否成立,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在Rt△ABC中,∠C=90°,三边a,b,c成等差数列,求tanA+tanB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+1
2x-1

(1)求f(x)的定义域;
(2)判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|3x-6|-|x-4|>2x的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={y|y=x2+2x+a,x∈R},B={x|3-x≤0},若A⊆B,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|3x-6|-|x-4|<2的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,且当x≥0时,f(x)=2x.若对任意的x∈[t,t+2],不等式f(x+t)≥f2(x)恒成立,则实数t的取值范围是(  )
A、(-∞,-2]
B、(0,2]
C、(-∞,-
3
2
]
D、[-
3
2
,+∞)

查看答案和解析>>

同步练习册答案