精英家教网 > 高中数学 > 题目详情
4.如图,在四棱锥中P-ABCD,底面ABCD为边长为$\sqrt{2}$的正方形,PA⊥BD.
(Ⅰ)求证:PB=PD;
(Ⅱ)若E,F分别为PC,AB的中点,EF⊥平面PCD,求三棱锥的D-ACE体积.

分析 (I)由正方形的性质得AC⊥BD,又BD⊥PA,故BD⊥平面PAC,于是BD⊥PO,由Rt△PBO∽Rt△PDO得出PB=PD;
(II)取PD的中点Q,连接AQ,EQ,则可证四边形AFEQ是平行四边形,故EF∥AQ,于是AQ⊥平面PCD,得出AQ⊥PD,于是PA=AD=$\sqrt{2}$,由CD⊥AD,CD⊥AQ得CD⊥平面PAD,故CD⊥PA,于是PA⊥平面ABCD,则E到底面的距离等于$\frac{1}{2}PA$,代入棱锥的体积公式计算.

解答 解:(Ⅰ)连接AC交BD于点O,
∵底面ABCD是正方形,
∴AC⊥BD且O为BD的中点.
又PA⊥BD,PA∩AC=A,
∴BD⊥平面PAC,又PO?平面PAC,
∴BD⊥PO.又BO=DO,
∴Rt△PBO∽Rt△PDO,
∴PB=PD.
(Ⅱ)取PD的中点Q,连接AQ,EQ,则EQ$\stackrel{∥}{=}$$\frac{1}{2}$CD,
又AF$\stackrel{∥}{=}\frac{1}{2}CD$,
∴AFEQ为平行四边形,EF∥AQ,
∵EF⊥平面PCD,
∴AQ⊥平面PCD,∵PD?平面PCD,
∴AQ⊥PD,∵Q是PD的中点,
∴AP=AD=$\sqrt{2}$.
∵AQ⊥平面PCD,CD?平面PCD,
∴AQ⊥CD,又AD⊥CD,又AQ∩AD=A,
∴CD⊥平面PAD
∴CD⊥PA,又BD⊥PA,CD∩BD=D,
∴PA⊥平面ABCD.
$\begin{array}{l}{V_{D-ACE}}={V_{E-ACD}}\\=\frac{1}{3}×\frac{1}{2}PA×{S_{△ACD}}\end{array}$
$\begin{array}{l}=\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\frac{1}{2}×\sqrt{2}×\sqrt{2}\\=\frac{{\sqrt{2}}}{6}\end{array}$
故三棱锥D-ACE的体积为$\frac{{\sqrt{2}}}{6}$.

点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{2x+y≤2}\end{array}\right.$,目标函数z=ax+by(a>0,b>0)的最大值M,若M的取值范围是[1,2],则点M(a,b)所经过的区域面积=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.以双曲线x2-$\frac{{y}^{2}}{2}$=1的左顶点为焦点的抛物线的标准方程为y2=-4x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知PA垂直圆O所在的平面,AB是圆O的直径,AB=2,C是圆O上一点,且PA=AC=BC,E,F分别为PC,PB中点.
(Ⅰ)求证:平面PAC⊥平面PBC;
(Ⅱ)求证:平面AEF与平面ABC的交线与平面PBC平行;
(Ⅲ)求四棱锥A-BCEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合A={x|$\frac{2}{x-1}$<1},集合B={x|mx-1>0},若A∪B=A,则实数m的取值范围是m≤$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知四棱柱ABCD-A1B1C1D1,底面ABCD为菱形,∠ADC=60°,BB1⊥底面ABCD,AA1=AC=4,E是CD的中点,
(1)求证:B1C∥平面AC1E;
(2)求几何体C1-AECB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,且满足2Sn=n-n2(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\left\{\begin{array}{l}{2^{a_n}},({n=2k-1})\\ \frac{2}{{({1-{a_n}})({1-{a_{n+2}}})}},({n=2k})\end{array}\right.$(k∈N*),求数列{bn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列{an}的通项公式为an=n2-kn,若对一切的n∈N*不等式an≥a3,则实数k的取值范围[5,7].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.由曲线y=$\sqrt{x}$,y=x-2及x轴所围成的封闭图形的面积是(  )
A.4B.$\frac{10}{3}$C.$\frac{16}{3}$D.$\frac{15}{4}$

查看答案和解析>>

同步练习册答案