精英家教网 > 高中数学 > 题目详情
5.经过点(2,0)且与曲线$y=\frac{1}{x}$相切的直线方程为(  )
A.x+4y+2=0B.x+4y-2=0C.x+y+2=0D.x+y-2=0

分析 设切点为(x0,y0),则y0=$\frac{1}{{x}_{0}}$,由于直线l经过(2,0),推出切线的斜率,再根据导数的几何意义求出曲线在点x0处的切线斜率,便可建立关于x0的方程.求出x0,然后求解切线方程.

解答 解:设直线l:y=k(x-1).∵曲线$y=\frac{1}{x}$,∴y′=-$\frac{1}{{x}^{2}}$,∴$y′{|}_{x={x}_{0}}$=-$\frac{1}{{{x}_{0}}^{2}}$
设曲线的切点(x0,y0)(x0≠0),则k=$\frac{{y}_{0}-0}{{x}_{0}-2}$,
∴-$\frac{1}{{{x}_{0}}^{2}}$=$\frac{1}{{{x}_{0}}^{2}-2{x}_{0}}$,∵x0≠0,∴x0=1,∴k=-1,
故直线l的方程为:x+y-2=0.
故选:D.

点评 此题考查学生会利用导数求曲线上过某点切线方程的斜率,会根据一点坐标和斜率写出直线的方程,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若数列{an}为等差数列,Sn为其前n项和,且a2=3a4-6,则S9等于(  )
A.54B.50C.27D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合A={x|x>0},B={x|y=ln(x-1)},则A∩B等于(  )
A.(1,+∞)B.(0,1)C.[1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若-2≤x≤2,则函数$f(x)={(\frac{1}{4})}^{x}-3•{(\frac{1}{2})}^{x}+2$的值域为[$-\frac{1}{4}$,6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$f(x)=-\frac{1}{2}{x^2}+6x-8lnx$在[m,m+1]上不单调,则实数m的取值范围是(1,2)∪(3,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.数列{an}中,若${a_1}=1,{a_{n+1}}=\frac{n}{n+1}{a_n}$,则an=$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某次数学测试之后,数学组的老师对全校数学总成绩分布在[105,135)的n名同学的19题成绩进行了分析,数据整理如下:
 组数 分组 19题满分人数 19题满分人数占本组人数比例
 第一组[105,110] 15 0.3
 第二组[110,115) 30 0.3
 第三组[115,120) x 0.4
 第四组[120,125) 100 0.5
 第五组[125,130) 120 0.6
 第六组[130,135) 195 y
(Ⅰ)补全所给的频率分布直方图,并求n,x,y的值;
(Ⅱ)现从[110,115)、[115,120)两个分数段的19题满分的试卷中,按分层抽样的方法抽取9份进行展出,并从9份试卷中选出两份作为优秀试卷,优秀试卷在[115,120)中的分数记为ξ,求随机变量ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知正六边形ABCDEF的边长为2,沿对角线AE将△FAE的顶点F翻折到点P处,使得$PC=\sqrt{10}$.
(1)求证:平面PAE⊥平面ABCDE;
(2)求二面角B-PC-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知抛物线y2=4x,过焦点F作直线与抛物线交于点A,B(点A在x轴下方),点A1与点A关于x轴对称,若直线AB斜率为1,则直线A1B的斜率为(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案