精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA-
3
sinA)cosB=0.
(1)求角B的大小;
(2)又若b=
3
,求△ABC面积的最大值.
考点:余弦定理,三角函数中的恒等变换应用
专题:三角函数的求值
分析:(1)将cosC=-cos(A+B)代入已知等式,利用两角和与差的余弦函数公式化简,整理后求出tanB的值,即可确定出B的度数;
(2)利用余弦定理列出关系式,将cosB的值代入并利用基本不等式变形求出ac的最大值,再由sinB的值,利用三角形面积公式即可求出三角形ABC面积的最大值.
解答: 解:1)在△ABC中,C=π-(A+B),
∴cosC=-cos(A+B),
∵cosC+(cosA-
3
sinA)cosB=0,
∴-cos(A+B)+cosAcosB-
3
sinAcosB=sinAsinB-
3
sinAcosB=sinA(sinB-
3
cosB)=0,
∵0<A<π,
∴sinA≠0,
∴sinB-
3
cosB=0,
∵0<B<π,cosB≠0,
∴tanB=
sinB
cosB
=
3

∴B=
π
3

2)∵b=
3

∴b2=a2+c2-2accosB,即3=a2+c2-ac≥2ac-ac=ac,
∴ac≤3,当且仅当a=c=
3
时取等号,
∴S△ABC=
1
2
acsinB=
1
2
acsin
π
3
=
3
4
ac≤
3
3
4

则△ABC面积的最大值是
3
3
4
点评:此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2分别是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,点P在C的右支上,|PF1|,|PF2|,|F1F2|成等差数列,且∠PF1F2=120°,则该双曲线的离心率是(  )
A、
3
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对边的长分别为a,b,c,且有2sinBcosA=sinAcosC+cosAsinC.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2
3
,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A,B,C的对边,且b2=ac,sinB=
2
sinA.
(Ⅰ)求cosB.
(Ⅱ)若△ABC的面积为
7
,求BC边上中线的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y、z满足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面上,
AB1
AB2
,|
OB1
|=|
OB2
|=1,
AP
=
AB1
+
AB2
.若|
OP
|<
1
3
,则|
OA
|的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的首项al=1,公差d>0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项,
(1)求数列{an}的通项公式:
(2)设bn=
1
n(an+5)
(n∈N*),Sn=b1+b2+…+bn是否存在最大的整数t,使得对任意的n均有Sn
t
36
总成立?若存在,求出t:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足不等式组
3x-y≤3
x+y≥1
x-y≥-1
,则z=2x-y+1的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=1-2cos2(2x)的最小正周期是
 

查看答案和解析>>

同步练习册答案