精英家教网 > 高中数学 > 题目详情
13.一个空间几何体的三视图如图所示,则该几何体的体积为16.

分析 由已知中的三视图,可知该几何体是一个以俯视图为底面的四棱锥,求出底面面积,代入棱锥体积公式,可得答案.

解答 解:由已知中的三视图,可知该几何体是一个以俯视图为底面的四棱锥,
其底面面积S=$\frac{1}{2}$(2+4)×4=12,
高h=4,
故棱锥的体积V=$\frac{1}{3}Sh$=16,
故答案为:16.

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.二项式(2x2-$\frac{1}{x}$)n的展开式中第3项与第4项的二项式系数相等,则展开式的第3项的系数为80.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知P为椭圆$\frac{{x}^{2}}{4}$+y2=1的左顶点,如果存在过点M(x0,0)(x0>0)的直线交椭圆于A、B两点,使得S△AOB=2S△AOP,则x0的取值范围是(  )
A.(1,$\sqrt{3}$]B.[$\sqrt{3}$,2)C.(1,2)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某程序框图如图所示,则输出的S的值是$\frac{25}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知抛物线y2=4x的准线与双曲线$\frac{x^2}{3}-\frac{y^2}{b^2}=1$的一条准线重合,则这条抛物线y2=4x与双曲线$\frac{x^2}{3}-\frac{y^2}{b^2}=1$的交点P到抛物线焦点的距离为(  )
A.$\sqrt{21}$B.21C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.要得到函数f(x)=sin(2x+$\frac{π}{4}$)的图象,只需将函数g(x)=sin2x的图象(  )
A.向左平移$\frac{π}{8}$个单位长度B.向右平移$\frac{π}{8}$个单位长度
C.向左平移$\frac{π}{4}$个单位长度D.向右平移$\frac{π}{4}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,多面体ABCDEF中,DE⊥平面ABCD,底面ABCD是菱形,AB=2,
∠BAD=60°,四边形BDEF是正方形.
(Ⅰ)求证:CF∥平面AED;
(Ⅱ)求直线AF与平面ECF所成角的正弦值;
(Ⅲ)在线段EC上是否存在点P,使得AP⊥平面CEF,若存在,求出$\frac{EP}{PC}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设p>0,抛物线方程为C:x2=2px.如图所示,过焦点F作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过点(0,-1).
(1)求满足条件的抛物线方程;
(2)过点(0,-2)作抛物线C的切线,若切点在第二象限,求切线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.△ABC的内角A、B、C所对的边分别为a、b、c,且满足(a+b+c)(a-b+c)=4,若A、B、C成等差数列,则ac的值为$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案