| A. | B. | C. | D. |
分析 可以以直线的方程为主进行讨论,根据直线的位置关系得出参数a,b的符号,再由此关系判断曲线的形状,不出现矛盾者即是所求的正确选项
解答 解:A选项中,直线的斜率大于0,故系数a,b的符号相反,此时曲线应是双曲线,故不对;
B选项中直线的斜率小于0,故系数a,b的符号相同且都为负,此时曲线不存在,故不对;
C选项中,直线斜率为正,故系数a,b的符号相反,且a正,b负,此时曲线应是焦点在x轴上的双曲线,图形符合结论,可选;
D选项中不正确,由C选项的判断可知D不正确.
故选:C
点评 本题考查直线与圆锥曲线的位置关系,解题的关键是根据直线的位置关系判断出两个参数的符号,以此确定曲线的类型,再结合选项中图形的形状,得出正确答案.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$倍 | B. | 2倍 | C. | $\sqrt{2}$倍 | D. | $\frac{3}{2}$倍 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{25}+\frac{y^2}{16}=1$ | B. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1 | D. | $\frac{{x}^{2}}{9}$+$\frac{{x}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$+$\sqrt{6}$ | B. | 2$\sqrt{5}$+2$\sqrt{6}$ | C. | $\sqrt{5}$+$\frac{{\sqrt{6}}}{2}$ | D. | 2$\sqrt{5}$+$\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | $2\sqrt{2}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\sqrt{x-1}$+$\sqrt{x+1}$ | B. | y=(x-1)2 | C. | y=($\frac{1}{2}$)x-1 | D. | y=ln(x-1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com