精英家教网 > 高中数学 > 题目详情

已知函数
(I)求函数的单调增区间;
(II)当时,求函数的最大值及相应的值.

(I)的单调递增区间为
(II)时. 取最大值,最大值为2.

解析试题分析:(I)

的单调递增区间为
(II)由可得
所以当时. 取最大值,最大值为2.
考点:本题主要考查三角函数的和差倍半公式,三角函数的图象和性质。
点评:中档题,本题综合考查三角函数的和差倍半公式,三角函数的图象和性质。运用三角公式对三角函数式进行化简,以便于进一步研究函数的性质,是这类题的显著特点。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数的最大值为3,其图像相邻两条对称轴之间的距离为
(1)求函数的解析式
(2)设,则,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
求函数的最小正周期和值域;
是第二象限角,且,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的最小正周期和值域;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调递减区间;  (2)设,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知),函数,且的最小正周期为
(Ⅰ)求的值;
(Ⅱ)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数 ()的部分图像如右所示.

(1)求函数的解析式;
(2)设,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

其中,
的最小正周期及单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知关于x的方程的两根为sinθ和cosθ:
(1)求的值;
(2)求m的值.

查看答案和解析>>

同步练习册答案