| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 3 | 4 | 8 | 15 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 15 | x | 3 | 2 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 1 | 2 | 8 | 9 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 10 | 10 | y | 3 |
| 甲校 | 乙校 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |
| P(K2≥k0) | 0.10 | 0.05 | 0.010 |
| k0 | 2.706 | 3.841 | 6.635 |
分析 (1)由频数与总数关系可得x,y的值,先求出从甲、乙校各抽取的人数,再减去已知人数即得;
(2)即求频率,按对应人数除以总数即可;
(3)按公式代入计算得k≈2.829>2.706,对照临界值表可知在犯错误的概率不超过0.10的前提下认为两个学校的数学成绩有差异.
解答 解:(1)从甲校抽取110×$\frac{1200}{1200+1000}$=60(人),
从乙校抽取110×$\frac{1200}{1200+1000}$=50(人),故x=10,y=7.
(2)估计甲校数学成绩的优秀率为$\frac{15}{60}$×100%=25%,
乙校数学成绩的优秀率为$\frac{20}{50}$×100%=40%.
(3)表格填写如图,
| 甲校 | 乙校 | 总计 | |
| 优秀 | 15 | 20 | 35 |
| 非优秀 | 45 | 30 | 75 |
| 总计 | 60 | 50 | 110 |
点评 本题主要考查独立性检验的应用,考查概率的计算,解题的关键是正确运算出观测值,理解临界值对应的概率的意义,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{7}$ | B. | $\frac{2}{7}$ | C. | $\frac{3}{7}$ | D. | $\frac{4}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2n | B. | 2n+1 | C. | ($\frac{1}{2}$)n | D. | ($\frac{1}{2}$)n+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com