精英家教网 > 高中数学 > 题目详情
9.已知圆O1:(x+1)2+y2=1,圆O2:(x-1)2+y2=9,动圆P与圆O1外切且与圆O2内切,圆心P的轨迹为曲线E.
(1)求E的方程;
(2)过O2的直线l交E于A,C两点,设△O1AO2,△O1CO2的面积分别为S1,S2,若S1=2S2,求直线l的斜率.

分析 (1)由于圆O1:(x+1)2+y2=1,圆O2:(x-1)2+y2=9,动圆P分别与圆O1相外切,与圆O2相内切.故可知动点P到两个定点O1(-1,0)、O2(1,0)的距离之和为4,从而轨迹是椭圆,故可求方程;
(2)由题意可知,直线l的斜率存在且不为0,设直线l的方程为x=ty+1,联立直线方程与椭圆方程,化为关于y的一元二次方程,由面积关系得到A、C两点的纵坐标得关系,则t可求,直线的斜率可求.

解答 解:(1)设P(x,y),动圆P的半径为r(r>0),
则由题意知|PO1|=1+r,|PO2|=3-r,
←于是|PO1|+|PO2|=4,即动点P到两个定点O1(-1,0)、O2(1,0)的距离之和为4.
又∵4=|PO1|+|PO2|>|O1O2|=2,
∴点P在以两定点O1(-1,0)、O2(1,0)为焦点,4为长轴长的椭圆上.
设此椭圆的标准方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)
由a=2,c=1,得b2=a2-c2=3.
因此,动圆圆心P所在的曲线方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)如图,由题意可知,直线l的斜率存在且不为0.
设直线l的方程为x=ty+1,
联立$\left\{\begin{array}{l}{x=ty+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得(3t2+4)y2+6ty-9=0.
解得:${y}_{A}=\frac{-3-6\sqrt{{t}^{2}+1}}{3{t}^{2}+4},{y}_{B}=\frac{-3+6\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$,
由S1=2S2,得$\frac{3+6\sqrt{{t}^{2}+1}}{3{t}^{2}+4}=2\frac{-3+6\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$,解得$t=\frac{\sqrt{5}}{2}$(舍去)或$t=-\frac{\sqrt{5}}{2}$.
∴直线l的斜率k=$\frac{1}{t}=-\frac{2\sqrt{5}}{5}$.

点评 本题主要考查椭圆的方程以及直线和椭圆的位置关系的应用,考查学生的运算能力.综合性较强,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.加工某种零件分三道工序,做第一道工序有5人,做第二道工序有6人,做第三道工序有4人,从中选3人,每人做一道工序,则选法总数是120.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a,b,c∈R,且a>b,则(  )
A.a3>b3B.a2>b2C.$\frac{1}{a}$<$\frac{1}{b}$D.ac>bc

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某茶馆为了了解热茶销售量y(杯)与气温x(℃)之间的关系,随机统计了某4天卖出的热茶的杯数与当天气温,并制作了对照表:
气温(℃)181310-1
杯数24343864
(1)根据表中数据,确定销售量y(杯)与气温x(℃)之间是否具有线性相关关系;
(2)若具有线性相关关系,求出销售量y(杯)与气温x(℃)的线性回归方程;
(3)预测当气温为20℃时,热茶约能销售多少杯?
(回归系数$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.把数字“2、0、1、3”四个数字任意排列,并且每两个数字间用加号“+”或减号“-”连接,则不同的运算结果有(  )
A.6种B.7种C.12种D.13种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在4月份的30天都记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,从中随机挑选了5天进行分析研究,得到如表格:
日期4月1日4月7日4月15日4月21日4月30日
温差x/℃101113128
发芽数y/颗2325302616
(1)请根据4月7日、15日和21日的三天数据,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若某天种子发芽率不低于$\frac{1}{4}$,则称该天种子发芽情况为“长势喜人”.根据表中5天的数据,以频率为概率,估计4月份的整体种子发芽情况.若在4月份中随机挑选3天,记“长势喜人”的天数为X,求X的分布列及数学期望.(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将5个颜色互不相同的球球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球球方法有(  )
A.60种B.30种C.25种D.20种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(0,1),且离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若直线l:y=k(x-1)+1与椭圆E交于不同两点M,N,线段MN的中点为P,O为坐标原点,且直线OP的斜率存在,求直线l与直线PO的斜率之积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.△ABC的三内角A,B,C的对边分别是a,b,c,则“a2+b2<c2”是“△ABC为钝角三角形”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案