精英家教网 > 高中数学 > 题目详情
约束条件
y≥-1
x-y≥2
3x+y≤14
,若使z=ax+y取得最大值的最优解有无穷多个,则实数a的取值是
 
考点:简单线性规划
专题:数形结合,不等式的解法及应用
分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,根据使z=ax+y取得最大值的最优解有无穷多个可得a的值.
解答: 解:由约束条件
y≥-1
x-y≥2
3x+y≤14
作出可行域如图,

由z=ax+y,得y=-ax+z,
当a>0时,-a<0,要使z=ax+y取得最大值的最优解有无穷多个,则-a=-
4
3
,a=
4
3

当a<0时,-a>0,要使z=ax+y取得最大值的最优解有无穷多个,则-a=1,a=-1.
∴实数a的取值为-1,
4
3

故答案为:-1,
4
3
点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正三棱柱的底面边长为2,体积为
3
,则直线B1C与底面ABC所成的角的大小为
 
(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:(
a
+
b
2=|
a
|2+2
a
b
+|
b
|2

查看答案和解析>>

科目:高中数学 来源: 题型:

设单位向量
a
b
与非零向量
c
满足
a
b
=
1
2
,向量
a
-
c
与向量
b
-
c
的夹角为90°,则|
c
|的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若θ为曲线y=x3+3x2+ax+2的切线的倾斜角,且所有θ组成的集合为[
π
4
π
2
),则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①“x=2”是“x2=4”的充分不必要条件;
②设A={x||x|≤3},B={y|y=-x2+t},若A∩B=∅,则实数t的取值范围为[3,+∞);
③若log2x+logx2≥2,则x>1;
④存在x,y∈R,使sin(x-y)=sinx-siny;
⑤若命题p:对任意的x∈R,函数y=cos(2x-
π
3
)的递减区间为[kπ-
π
12
,kπ+
12
](k∈Z),命题q:存在x∈R使tanx=1,则命题“p且q”是真命题.
其中真命题的序号为(  )
A、①②④B、③④⑤
C、②③⑤D、①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

设递增数列{an}满足al=1,al、a2、a5成等比数列,且对任意n∈N*,函数.f( x)=(an+2-an+1)x-(an-an-1)sinx+ancosx满足f′(π)=0.
(I)求数列{an}的通项公式;
(Ⅱ)若数列{an}的前n项和为Sn,bn=
1
Sn
,数列{bn}的前n项和为Tn,证明:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1-x
+
1+x
的最大值是
 
;最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
+alnx,其中a为实常数.
(1)求f(x)的极值;
(2)若对任意x1,x2∈[1,3],且x1<x2,恒有
1
x1
-
1
x2
>|f(x1)-f(x2)|成立,求a的取值范围.

查看答案和解析>>

同步练习册答案