设数列{an}的前n项和为Sn,对一切n∈N*,点
都在函数f(x)=x+
的图象上.
(1)求a1、a2、a3的值,猜想an的表达式,并用数学归纳法证明;
(2)将数列{an}依次按1项、2项、3项、4项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b5+b100的值.
(1)∵点
在函数f(x)=x+
的图象上,
∴
=n+
,∴Sn=n2+
an.
令n=1得,a1=1+
a1,∴a1=2;
令n=2得,a1+a2=4+
a2,∴a2=4;
令n=3得,a1+a2+a3=9+
a3,∴a3=6.
由此猜想:an=2n.
用数学归纳法证明如下:
①当n=1时,由上面的求解知,猜想成立.
②假设n=k(k≥1)时猜想成立,即ak=2k成立,
则当n=k+1时,注意到Sn=n2+
an(n∈N*),
故Sk+1=(k+1)2+
ak+1,Sk=k2+
ak.
两式相减得,ak+1=2k+1+
ak+1-
ak,所以ak+1=4k+2-ak.
由归纳假设得,ak=2k,
故ak+1=4k+2-ak=4k+2-2k=2(k+1).
这说明n=k+1时,猜想也成立.
由①②知,对一切n∈N*,an=2n成立.
(2)因为an=2n(n∈N*),所以数列{an}依次按1项、2项、3项、4项循环地分为(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),….每一次循环记为一组.由于每一个循环含有4个括号,故b100是第25组中第4个括号内各数之和.由分组规律知,各组第4个括号中所有第1个数组成的数列是等差数列,且公差为20.同理,由各组第4个括号中所有第2个数、所有第3个数、所有第4个数分别组成的数列也都是等差数列,且公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.注意到第一组中第4个括号内各数之和是68,
所以b100=68+24×80=1988,
又b5=22,所以b5+b100=2010.
.
科目:高中数学 来源: 题型:
已知P(x0,y0)是抛物线y2=2px(p>0)上的一点,过P点的切线方程的斜率可通过如下方式求得:在y2=2px两边同时对x求导,得2yy′=2p,则y′=
,所以过P的切线的斜率k=
.类比上述方法求出双曲线x2-
=1在P(
,
)处的切线方程为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
对于不等式
≤n+1(n∈N*),某人的证明过程如下:
1°当n=1时,
≤1+1,不等式成立.
2°假设n=k(k∈N*)时不等式成立,即
=
=(k+1)+1.
∴当n=k+1时,不等式成立.
上述证法( )
A.过程全都正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
查看答案和解析>>
科目:高中数学 来源: 题型:
已知矩形ABCD,R、P分别在边CD、BC上,E、F分别为AP、PR的中点,当P在BC上由B向C运动时,点R在CD上固定不变,设BP=x,EF=y,那么下列结论中正确的是( )
![]()
A.y是x的增函数
B.y是x的减函数
C.y随x的增大先增大再减小
D.无论x怎样变化,y为常数
查看答案和解析>>
科目:高中数学 来源: 题型:
函数f(x)=(x-2010)(x+2011)的图象与x轴、y轴有三个交点,有一个圆恰好通过这三个点,则此圆与坐标轴的另一个交点是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com