精英家教网 > 高中数学 > 题目详情
1.若复数z1,z2在复平面内的对应点关于虚轴对称,且z1=1+i,则z2=(  )
A.1+iB.1-iC.-1-iD.-1+i

分析 利用复数z1,z2在复平面内的对应点关于虚轴对称即可得出.

解答 解:复数z1,z2在复平面内的对应点关于虚轴对称,且z1=1+i,
则z2=-1+i.
故选:D.

点评 本题考查了复数的几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若数列{an}满足a1=1,an+1=nan+1,则第5项a5=(  )
A.5B.65C.89D.206

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知m、n为空间两条不同直线,α、β、γ为不同的平面,则下列命题正确的是(  )
A.若α⊥β,a?α,则a⊥βB.若α⊥γ,β⊥γ,则α∥β
C.若α∥β,a?α,b?β,则a∥bD.若m⊥α,m∥n,n∥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的函数f(x)和g(x),其各自导函数f′(x)f和g′(x)的图象如图所示,则函数F(x)=f(x)-g(x)极值点的情况是(  )
A.只有三个极大值点,无极小值点B.有两个极大值点,一个极小值点
C.有一个极大值点,两个极小值点D.无极大值点,只有三个极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3-3x2-9x+2
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间[-2,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\frac{1}{3}$x3-ax2+2x+3在(-∞,+∞)上单调递增,则实数a的取值范围是[-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知p:a>2,q:a2>4,则¬p是¬q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果a<b<0,那么下列不等式成立的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.ab<b2C.ac2<bc2D.|a|>|b|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.学校的校园活动中有这样一个项目.甲箱子中装有大小相同、质地均匀的4个白球,3个黑球.乙箱子中装有大小相同、质地均匀的3个白球,2个黑球.
(1)从两个箱子中分别摸出1个球,如果它们都是白球则获胜,有人认为,这两个箱子里装的白球比黑球多,所以获胜的概率大于0.5,你认为呢?并说明理由;
(2)如果从甲箱子中不放回地随机取出4个球.求取到的白球数的分布列和期望;
(3)如果从甲箱子中随机取出2个球放入乙箱中,充分混合后,再从乙箱中取出2个球放回甲箱,求甲箱中白球个数没有减少的槪率.

查看答案和解析>>

同步练习册答案