精英家教网 > 高中数学 > 题目详情
2.已知定义域为R的函数f(x)=μ+$\frac{2λx+2015sinx+λ{x}^{3}}{2+{x}^{2}}$(μ,λ∈R)有最大值和最小值,且最大值与最小值的和为6,则λ+μ=3.

分析 先确定f(x)-μ=λx+$\frac{2015sinx}{2+{x}^{2}}$为奇函数,再利用条件,即可得出结论.

解答 解:∵f(x)=μ+λx+$\frac{2015sinx}{2+{x}^{2}}$,
∴f(x)-μ=λx+$\frac{2015sinx}{2+{x}^{2}}$为奇函数,
∴f(x)max-μ+f(x)min-μ=0,
即f(x)max+f(x)min=2μ,
∵最大值与最小值的和为6,
∴2μ=6,则μ=3,
∵若f(x)在R上既有最大值又有最小值,
∴λ=0,否则函数的值域为R,
∴λ+μ=3.
故答案为:3.

点评 本题主要考查函数最值的应用,利用条件构造奇函数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=px-$\frac{p}{x}$-2lnx,其中e是自然对数的底数.
(Ⅰ)当p=$\frac{\sqrt{3}}{2}$时,求函数f(x)的极值;
(Ⅱ)设g(x)=$\frac{2e}{x}$,若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在直三棱柱ABC-A1B1C1中,AB=BC=2,∠ABC=120°,D为AC的中点,P为棱A1B上的动点.
(1)探究:AP能否与平面A1BC垂直?
(2)若AA1=$\sqrt{6}$,求二面角A1-BD-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.现有8名区级学科竞赛优胜者,其中有语文学科A1、A2、A3,数学学科B1、B2、B3,英语学科C1、C2.从中选出语文、数学、英语学科竞赛优胜者各1名组成一个小组参加市级学科竞赛,已知各学科中每名优胜者被选中的机会均等.
(Ⅰ)列举出组成这个小组所有可能的结果;
(Ⅱ)求A3和B3均没有被选中的概率;
(Ⅲ)求B1和C1中至少有一人被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E的中心在原点,焦点在x轴上,椭圆上的点到焦点的距离的最小值为$\sqrt{2}$-1,离心率为e=$\frac{\sqrt{2}}{2}$.
(1)求椭圆E的方程;
(2)过点(1,0)作斜率为k的直线l交E于A、P两点,点B是点A关于直线x轴的对称点,求证直线BP过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}是等差数列,设bn=a2n+1-an2,证明:数列{bn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.从某校的800名男生中随机抽取50人测量身高,被测学生身高介于介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…..,第八组[190,195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.
(Ⅰ)求第七组的频率并估计该校男生中身高在180cm以上(含180cm)的人数;
(Ⅱ)从第六组和第八组的男生中随机抽取2名,求他们的身高之差大于5cm的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解答下列问题:
(1)化简:$\frac{cos(π-α)•tan(α-2π)•tan(2π-α)}{sin(π+α)}$;
(2)已知A为三角形的内角,且cosA=-$\frac{\sqrt{2}}{2}$,求角A的弧度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2-2lnx,若0<x1<x2,求证:$\frac{{x}_{2}-{x}_{1}}{ln{x}_{2}-ln{x}_{1}}$<2x2

查看答案和解析>>

同步练习册答案