精英家教网 > 高中数学 > 题目详情
17.记集合A={x|$\frac{1}{x-1}$<1},B={x|(x-1)(x+a)>0},若x∈A是x∈B的充分不必要条件,则实数a的取值范围是(  )
A.(-2,-1]B.[-2,-1]C.D.[-2,+∞)

分析 根据充分条件和必要条件的定义即可得到结论.

解答 解:A={x|$\frac{1}{x-1}$<1}={x|$\frac{1}{x-1}$-1=$\frac{2-x}{x-1}$<0}={x|x>2或x<1},
若x∈A是x∈B的充分不必要条件,
则A?B,
若a=-1,则B={x|x≠1}满足A?B.
若a<-1
B={x|(x-1)(x+a)>0}={x|x>-a或x<1},此时满足-a≤2,即a≥-2,
此时-2≤a<-1,
若a>-1,B={x|(x-1)(x+a)>0}={x|x>1或x<-a},此时不满足A?B,
综上-2≤a≤-1,
故选:B

点评 本题主要考查充分条件和必要条件的应用,根据不等式的解法结合集合的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设θ是△ABC的一个内角,且sinθ+cosθ=$\frac{1}{5}$,x2sinθ-y2cosθ=1表示(  )
A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆
C.焦点在x轴上的双曲线D.焦点在y轴上的双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=cosx•sin({x+\frac{π}{3}})-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{4}$,x∈R.
(1)求f(x)的最小正周期和对称轴方程;
(2)求不等式f(x)≥$\frac{1}{4}$中x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若向量$\overrightarrow{a}$的始点为A(-2,4),终点为B(2,1).求:
(Ⅰ)向量$\overrightarrow{a}$的模.
(Ⅱ)与$\overrightarrow{a}$平行的单位向量的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题:?x∈R,x>0的否定为(  )
A.?x∈R,x≤0B.?x0∈R,x0>0C.?x0∈R,x0≤0D.?x∈R,x<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.i为虚数单位,则$\frac{1-2i}{{{{(1+i)}^2}}}$=$-1-\frac{1}{2}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sin(2x+θ)+$\sqrt{3}$ cos(2x+θ)(x∈R)满足2015f(-x)=$\frac{1}{{{{2015}^{f(x)}}}}$,且f(x)在[0,$\frac{π}{4}$]上是减函数,则θ的一个可能值是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用反证法证明命题:“若a>0,b>0,a3+b3=2,则a+b≤2”时,反设正确的是(  )
A.a+b≤2B.a+b<2C.a+b≥2D.a+b>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列幂函数中过点(0,0),(1,1)的偶函数是(  )
A.y=x${\;}^{\frac{1}{2}}$B.y=x4C.y=x-1D.y=x3

查看答案和解析>>

同步练习册答案