分析 (1)原方程整理得:(x-2y-3)m+2x+y+4=0.由$\left\{\begin{array}{l}{x-2y-3=0}\\{2x+y+4=0}\end{array}\right.$,可得直线必过定点M;
(2)表示出面积,利用基本不等式,即可得出结论.
解答 (1)证明:原方程整理得:(x-2y-3)m+2x+y+4=0.
由$\left\{\begin{array}{l}{x-2y-3=0}\\{2x+y+4=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$,
∴不论m为何值,直线必过定点M(-1,-2)
(2)解:设直线l1的方程为.y=k(x+1)-2(k<0).
令$y=0,x=\frac{k-2}{-k},令x=0,y=k-2$.
∴${S_△}=\frac{1}{2}|\frac{k-2}{-k}||k-2|=\frac{1}{2}[(-k)+\frac{4}{-k}+4]≥\frac{1}{2}(4+4)=4$.
当且仅当$-k=\frac{4}{-k}$,即k=-2时,三角形面积最小.
则l1的方程为2x+y+4=0.
点评 本题考查直线过定点,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0.8 | B. | 0.6 | C. | 0.5 | D. | 0.4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,2] | B. | $[{1,\frac{13}{5}}]$ | C. | $[{\frac{1}{2},2}]$ | D. | $[{\frac{1}{2},\frac{13}{5}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com