精英家教网 > 高中数学 > 题目详情

【题目】2016里约奥运会期间,小赵常看的4个电视频道中有2个频道在转播奥运比赛,若小赵这时打开电视,随机打开其中两个频道试看,那么,小赵所看到的第一个电视台恰好没有转播奥运比赛,而第二个电视台恰好在转播奥运比赛的概率为(

A.B.C.D.

【答案】B

【解析】

利用古典概型的概率计算公式求概率,即可得到答案.

设正在转播奥运比赛的电视台为,没有转播奥运比赛的电视台为cd

则前两个节目出现的不同情况有:()()(c)(c)(d)(d)(c)(c)(d)(d)(cd)(dc)12种不同情况,

第二个电视台在转播奥运比赛的情况有(c)(d)(c)(d),共4种不同情况,故所求概率为.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种产品的质量用其质量指标值来衡量)质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为配方和配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:

配方的频数分布表:

指标值分组

[90,94

[94,98

[98,102

[102,106

[106,110]

频数

8

20

42

22

8

配方的频数分布表:

指标值分组

[90,94

[94,98

[98,102

[102,106]

[106,110]

频数

4

12

42

32

10

1)分别估计用配方、配方生产的产品的优质品率;

2)已知用配方生产的一件产品的利润(单位:元)与其质量指标值的关系为,估计用配方生产的一件产品的利润大于的概率,并求用配方生产的上述件产品的平均利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图(已知本次测试成绩满分100分,且均为不低于50分的整数),请根据图表中的信息解答下列问题.

1)求全班的学生人数及频率分布直方图中分数在[7080)之间的矩形的高;

2)为了帮助学生提高数学成绩,决定在班里成立二帮一小组,即从成绩[90100]中选两位同学,共同帮助[5060)中的某一位同学,已知甲同学的成绩为53分,乙同学的成绩为96分,求甲、乙恰好被安排在同一小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,.

(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.

(2)处取得极大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为(其中为参数),以原点为极点,以轴为极轴建立极坐标系,曲线的极坐标方程为为常数,且),直线与曲线交于两点.

1)若,求实数的值;

2)若点的直角坐标为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】半正多面体亦称阿基米德多面体,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的棱长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若棱长为的二十四等边体的各个顶点都在同一个球面上,则该球的表面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体中,四边形为钝角的平行四边形,四边形为直角梯形,.

1)求证:

2)若点到平面的距离为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在梯形ABCD中,,,,过A,B分别作CD的垂线,垂足分别为E,F,已知,,将梯形ABCD沿AE,BF同侧折起,使得平面平面ABFE,平面平面BCF,得到图2.

1)证明:平面ACD;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

(1)当为何值时,直线是曲线的切线;

(2)若不等式上恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案