| A. | (-1,0) | B. | (0,1) | C. | (-∞,1] | D. | [1,+∞) |
分析 由题意求出f(x)的值域,再把对任意x1∈R,都存在x2∈R,使f(x1)=g(x2)转化为函数g(x)的值域包含f(x)的值域,进一步转化为关于a的不等式求解.
解答 解:∵f(x)=-2x<0,
∴?x1∈R,f(x)=-2x∈(-∞,0),
∵?x2∈R,使f(x1)=g(x2),
∴g(x)=lg(ax2-2x+1)的值域包含(-∞,0),
设y=ax2-2x+1的值域为B,
则(0,1]⊆B.
由题意当a=0时,上式成立.
当a>0时,△=4-4a≥0,解得0<a≤1.
当a<0时,ymax=$\frac{4a-4}{4a}$≥1,即$-\frac{1}{a}$≥0恒成立.
综上,a≤1.
∴实数a的取值范围是(-∞,1].
故选:C.
点评 本题考查函数的值域,体现了数学转化思想方法,正确理解题意是解答该题的关键,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 产品重量(克) | 频数 |
| (490,495] | 6 |
| (495,500] | 8 |
| (500,505] | 14 |
| (505,510] | 8 |
| (510,515] | 4 |
| 甲流水线 | 乙流水线 | 合计 | |
| 合格品 | a= | b= | |
| 不合格品 | c= | d= | |
| 合 计 | n= |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com