精英家教网 > 高中数学 > 题目详情
9.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PD⊥底面ABCD,M,N分别为AB,PC的中点,PD=AD=2,AB=4.则点A到平面PMN的距离为$\frac{\sqrt{6}}{3}$.

分析 取PD的中点E,连接AE,NE,证明AE∥MN,可得点A到平面PMN的距离等于E到平面PMN的距离,由VE-PMN=VM-PEN,可得点A到平面PMN的距离.

解答 解:取PD的中点E,连接AE,NE,则
∵四棱锥P-ABCD中,底面ABCD是矩形,M,N分别为AB,PC的中点,
∴NE∥AM,NE=AM,
∴AENM是平行四边形,
∴AE∥MN,
∴点A到平面PMN的距离等于E到平面PMN的距离,设为h,
△PMN中,PN=$\sqrt{5}$,PM=2$\sqrt{3}$,MN=$\sqrt{5}$,∴S△PMN=$\frac{1}{2}×2\sqrt{3}×\sqrt{2}$=$\sqrt{6}$,
由VE-PMN=VM-PEN,可得$\frac{1}{3}×\sqrt{6}h=\frac{1}{3}×\frac{1}{2}×1×\frac{1}{2}×2$,
∴h=$\frac{\sqrt{6}}{3}$.
故答案为:$\frac{\sqrt{6}}{3}$.

点评 本题考查点A到平面PMN的距离,考查学生的计算能力,点A到平面PMN的距离转化为E到平面PMN的距离是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知在棱长为6正四面体ABCD中,E为AD的中点.
(1)求二面角A-CD-B的余弦值;
(2)求点E到平面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.平面直角坐标系xOy中,经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点的直线x-y-$\sqrt{3}$=0与C相交于M,N两点,P为MN的中点,且OP斜率是-$\frac{1}{4}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l分别与椭圆C和圆D:x2+y2=r2(b<r<a)相切于点A,B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系中,定义点P(x1,y1),Q(x2,y2)之间的直角距离为L(P,Q)=|x1-x2|+|y1-y2|,点A(x,2),B(1,a),C(-2,1)
(1)当a=3时,若L(A,B)>L(A,C),求x的取值范围;
(2)若对任意x∈R,L(A,B)+L(A,C)>L(B,C)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD是正三角形,平面PAD⊥底面ABCD.
(1)证明:AB⊥平面PAD;
(2)求面PAD与面PDB所成的二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=alnx+bx在x=1处的切线与直线x-y+1=0平行,函数f(x)在[1,e]上是单调函数且最小值为0.
(1)求实数a,b;
(2)对一切x∈(0,+∞),xf(x)≤x2-cx+12恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=ax3-x+1(x∈R),若对于任意x∈[-1,1]都有f(x)≥0,则实数a的取值范围为(  )
A.(-∞,2]B.[0+∞)C.[0,2]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ln(x+1)-x2-ax+b在点(0,f(0))处的切线方程为y+2=0.
(Ⅰ)求函数f(x)的解析式
(Ⅱ)若函数g(x)=f′(x)+3x在区间(m,2m+1)上不是单调函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设P(x,y)是函数y=f(x)的图象上一点,向量$\overrightarrow{a}$=(1,(x-2)5),$\overrightarrow{b}$=(1,y-2x),且满足$\overrightarrow{a}$∥$\overrightarrow{b}$,数列{an}是公差不为0的等差数列,若f(a1)+f(a2)+…+f(a9)=36,则a1+a2+…+a9=(  )
A.0B.9C.18D.36

查看答案和解析>>

同步练习册答案