精英家教网 > 高中数学 > 题目详情
已知tan(
π
4
+x)=-
1
2

(Ⅰ)求tan2x的值;
(Ⅱ)若x是第二象限的角,化简三角式
1+sinx
1-sinx
+
1-sinx
1+sinx
,并求值.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:(Ⅰ)已知等式左边利用两角和与差的正切函数公式化简,整理求出tanx的值,再利用二倍角的正切函数公式化简tan2x,将tanx的值代入计算即可求出值;
(Ⅱ)原式被开方数变形后,利用二次根式的性质及绝对值的代数意义化简得到最简结果,由tanx的值求出cosx的值,代入计算即可求出值.
解答: 解:(Ⅰ)已知等式变形得:tan(
π
4
+x)=
1+tanx
1-tanx
=-
1
2

解得:tanx=-3,
则tan2x=
2tanx
1-tan2x
=
-6
-8
=
3
4

(Ⅱ)∵x是第二象限的角,∴cosx<0,
∴原式=
(1+sinx)2
1-sin2x
+
(1-sinx)2
1-sin2x
=
1+sinx
|cosx|
+
1-sinx
|cosx|
=
1+sinx+1-sinx
-cosx
=-
2
cosx

∵tanx=-3,
∴cos2x=
1
1+tan2x
=
1
10

∵cosx<0,
∴cosx=-
10
10

∴原式=-
2
cosx
=2
10
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
1+x2

(I)判断f(x)的奇偶性;
(Ⅱ)确定函数f(x)在(-∞,0)上是增函数还是减函数?证明你的结论.
(Ⅲ)若对任意x∈[1,2]都有f(x)≤
a
2
-1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c,a2=b2+c2+bc.
(1)求角A的大小;
(2)若a=2
2
,b=2,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+2ax-1,若f(x)在[-1,1]上的最大值为g(a),求g(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x2-2ax在x∈[-1,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+b
2x+1+a
是奇函数.
(1)求a,b的值;
(2)判断f(x)的单调性;
(3)解关于t的不等式f(t2-2t)+f(2t2-1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意x、y,f(x)满足f(x+y)=f(x)+f(y)且当x>0时,f(x)<0,又f(1)=-2.
(1)求证:f(x)是R上的减函数;
(2)若?x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x3+
3a
x
的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x+2y+1=0,点A(1,3).
(1)求过点A且平行于l的直线l1的方程;
(2)求过点A且垂直于l的直线l2的方程.

查看答案和解析>>

同步练习册答案