分析 根据θ的取值范围,求出θ+$\frac{π}{3}$的取值范围,再利用三角函数的定义与三角恒等变换即可求出cosθ的值.
解答 解:∵$\frac{π}{2}$<θ<π,
将角θ逆时针旋转$\frac{π}{3}$时,$\frac{5π}{6}$<θ+$\frac{π}{3}$<$\frac{4π}{3}$;
又sin(θ+$\frac{π}{3}$)=-$\frac{3}{5}$,
∴cos(θ+$\frac{π}{3}$)=-$\frac{4}{5}$,
∴cosθ=cos[(θ+$\frac{π}{3}$)-$\frac{π}{3}$]
=cos(θ+$\frac{π}{3}$)cos$\frac{π}{3}$+sin(θ+$\frac{π}{3}$)sin$\frac{π}{3}$
=-$\frac{4}{5}$×$\frac{1}{2}$-$\frac{3}{5}$×$\frac{\sqrt{3}}{2}$
=-$\frac{4+3\sqrt{3}}{10}$.
故答案为:-$\frac{4+3\sqrt{3}}{10}$.
点评 本题考查了任意角三角函数的定义与应用问题,也考查了三角恒等变换的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | y=x2 | B. | y=$\sqrt{x}$ | C. | y=log2x | D. | y=-($\frac{1}{2}$)|x| |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{3}$ | B. | $\frac{2\sqrt{2}}{3}$ | C. | $\sqrt{2}$ | D. | $\frac{4\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{a}{2-2a}$ | B. | $\frac{2a}{1-a}$ | C. | $\frac{2a}{a-1}$ | D. | $\frac{a}{2a-2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x<2} | B. | {x|-4<x<2} | C. | {0,1,2} | D. | {0,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com