精英家教网 > 高中数学 > 题目详情

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知,满足
(1)将表示为的函数,并求的最小正周期;
(2)已知分别为的三个内角对应的边长,若对所有恒成立,且,求的取值范围.

(I),其最小正周期为. (II)   

解析试题分析:(I)由    

所以,其最小正周期为
(II)因为对所有恒成立
所以,且   
因为为三角形内角,所以,所以. 
由正弦定理得
   

所以的取值范围为   
考点:本题考查了三角函数的性质及正余弦定理
点评:此类问题比较综合,运用时除了掌握三角函数的恒等变换之外,还要求灵活运用正余弦定理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量,函数·
(1)求函数的最小正周期T及单调减区间
(2)已知分别是△ABC内角A,B,C的对边,其中A为锐角,
,求A,b和△ABC的面积S

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知为坐标原点,向量是直线上一点,且
(1)设函数,讨论的单调性,并求其值域;
(2)若点共线,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知向量,函数.
(1)求函数的单调递增区间;
(2)在中,分别是角的对边,,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)已知函数一个周期的图像如图所示。

(1)求函数的表达式;
(2)若,且的一个内角,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数,(Ⅰ)确定函数的单调增区间;(Ⅱ)当函数取得最大值时,求自变量的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知向量,,设函数.
(Ⅰ)若函数 的零点组成公差为的等差数列,求函数的单调递增区间;
(Ⅱ)若函数的图象的一条对称轴是,(),求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(1)求的周期和及其图象的对称中心;
(2)在△ABC中,角A、B、C的对边分别是,满足 求函数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数
(1)求函数的最小正周期,最大值及取最大值时相应的值;
(2)如果,求的取值范围.

查看答案和解析>>

同步练习册答案