精英家教网 > 高中数学 > 题目详情
11.回归分析中相关指数的计算公式R2=$1-\frac{{\sum_{i=1}^n{{{({y_i}-{{\hat y}_i})}^2}}}}{{\sum_{\;}^{\;}{{{({y_i}-\overline y)}^2}}}}$.

分析 直接填入公式即可.

解答 解:回归分析中相关指数的计算公式R2=$1-\frac{{\sum_{i=1}^n{{{({y_i}-{{\hat y}_i})}^2}}}}{{\sum_{\;}^{\;}{{{({y_i}-\overline y)}^2}}}}$.
故答案为:$1-\frac{{\sum_{i=1}^n{{{({y_i}-{{\hat y}_i})}^2}}}}{{\sum_{\;}^{\;}{{{({y_i}-\overline y)}^2}}}}$.

点评 本题考查回归分析,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求下列函数的导数
(1)y=(2x2+3)(3x-2)
(2)y=$\frac{lnx}{x+1}-{2}^{{\;}^{2x-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知△ABC的内角A,B,C对的边分别为a,b,c,sinA+$\sqrt{2}$sinB=2sinC,b=3,当内角C最大时,△ABC的面积等于$\frac{9+3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知F是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点,B是虚轴的一个端点,线段BF与双曲线相交于D,且$\overrightarrow{BF}=2\overrightarrow{BD}$,则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设P(1,f(1))是曲线C:f(x)=x2+2x+3上的一点,则曲线C过点P的切线方程是(  )
A.4x-y+10=0B.4x-y+2=0C.x-4y+10=0D.x-4y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}\frac{1}{x+2},-1≤x≤0\\{x}^{2}-2x,0<x≤1\end{array}\right.$,若f(2m-1)<$\frac{1}{2}$,则m的取值范围是(  )
A.m>$\frac{1}{2}$B.m$<\frac{1}{2}$C.0$≤m<\frac{1}{2}$D.$\frac{1}{2}<m≤1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点A(a,-5),B(0,10)间的距离是17,则a的值是(  )
A.8B.-8C.±4D.±8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对边的长分别为a,b,c,若b=1,B=$\frac{π}{3}$,
(1)若a+c=2,解此三角形;   
(2)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知球的直径SC=4,A,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{5\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案