精英家教网 > 高中数学 > 题目详情
7.平面直角坐标系xOy中,曲线C1的参数方程为:$\left\{\begin{array}{l}x=acosφ\\ y=2sinφ\end{array}$(φ为参数)(a>0).以原点O为极点,x轴的正半轴为极轴,取相等的长度单位建立极坐标系,曲线C2的极坐标方程为:2ρcosθ+3ρsinθ-8=0.已知曲线C1与曲线C2的一个交点在x轴上.
(1)求a的值及曲线C1的普通方程;
(2)已知点A,B是极坐标方程θ=α,θ=α+$\frac{π}{2}$的两条射线与曲线C1的交点,求$\frac{1}{{{{|{OA}|}^2}}}$+$\frac{1}{{{{|{OB}|}^2}}}$的值.

分析 (1)曲线C1的参数方程为:$\left\{\begin{array}{l}x=acosφ\\ y=2sinφ\end{array}$(φ为参数)(a>0),已知曲线C1与曲线C2的一个交点在x轴上,求a的值,即可求出曲线C1的普通方程;
(2)化点A,B的极坐标为直角坐标后代入曲线C1的直角坐标方程,整理后即可得到$\frac{1}{{{{|{OA}|}^2}}}$+$\frac{1}{{{{|{OB}|}^2}}}$的值.

解答 解:(1)曲线C2的极坐标方程为:2ρcosθ+3ρsinθ-8=0,直角坐标方程为2x+3y-8=0,
令y=0,可得x=4,
∵曲线C1的参数方程为:$\left\{\begin{array}{l}x=acosφ\\ y=2sinφ\end{array}$(φ为参数)(a>0),已知曲线C1与曲线C2的一个交点在x轴上.
∴$\left\{\begin{array}{l}{acosφ=4}\\{2sinφ=0}\end{array}\right.$,∴a=4,
∴曲线C1的普通方程是$\frac{x^2}{16}+\frac{y^2}{4}=1$;
(2)由题意得点A,B的直角坐标分别为(ρ1cosα,ρ1sinα),(ρ2cos(α+$\frac{π}{2}$),ρ2sin(α+$\frac{π}{2}$)).
∵点A,B在曲线C1 上,
∴$\frac{{{ρ}_{1}}^{2}co{s}^{2}θ}{16}+\frac{{{ρ}_{1}}^{2}si{n}^{2}θ}{4}$=1,$\frac{{{ρ}_{2}}^{2}si{n}^{2}θ}{16}+\frac{{{ρ}_{2}}^{2}co{s}^{2}θ}{4}$=1.
∴$\frac{1}{{{{|{OA}|}^2}}}$+$\frac{1}{{{{|{OB}|}^2}}}$=$\frac{co{s}^{2}θ}{16}+\frac{si{n}^{2}θ}{4}$+$\frac{si{n}^{2}θ}{16}$+$\frac{co{s}^{2}θ}{4}$=$\frac{5}{16}$.

点评 本题考查了圆的参数方程,简单曲线的极坐标方程,考查了数学转化与化归的思想方法,训练了三角函数的诱导公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.区间[x1,x2]的长度为x2-x1.已知函数y=4|x|的定义域为[a,b],值域为[1,4],则区间[a,b]长度的最大值与最小值之差为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$\underset{lim}{x→0}$$\frac{atanx+b(1-cosx)}{cln(1-2x)+d(1-{e}^{-{x}^{2}})}$=2,其中a2+c2≠0,则必有(  )
A.b=4dB.b=-4dC.a=4cD.a=-4c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数$f(x)=Asin(ωx+α)(A>0,ω>0,-\frac{π}{2}<α<\frac{π}{2})$的最小正周期是π,且当x=$\frac{π}{6}$时,f(x)取得最大值5.
(1)求f(x)的解析式及单调减区间;
(2)将函数f(x)的图象向右平移m(m>0)个单位长度后得到函数y=g(x)的图象,且y=g(x)是偶函数,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设圆${C_1}:{(x+\sqrt{5})^2}+{y^2}$=4与圆${C_2}:{(x-\sqrt{5})^2}+{y^2}$=4,动圆C与圆C1外切,与圆C2内切.
(1)求动圆C的圆心轨迹L的方程;
(2)已知点$M(2\sqrt{5},1)$,P为L上动点,求|MP|+|C2P|最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$y=\sqrt{x}$的导数y′=$\frac{1}{2\sqrt{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1=3,且an+1+1=an2-nan-n(n∈N*).
(1)计算a2,a3,a4的值,由此猜想数列{an}的通项公式(不必证明);
(2)求证:当n≥2时,ann≥4nn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:若x+y≠5,则x≠2或y≠3;命题q:若a<b,则am2<bm2,下列选项中是真命题的为(  )
A.p∧¬qB.¬pC.p∧qD.¬p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知函数f(x)=4x2-kx-8在[5,20]上具有单调性,求实数k的取值范围.
(2)关于x的方程mx2+2(m+3)x+2m+14=0有两个不同的实根,且一个大于4,另一个小于4,求m的取值范围.

查看答案和解析>>

同步练习册答案