精英家教网 > 高中数学 > 题目详情
已知
a
b
为非零向量,m=
a
+t
b
(t∈R),若|
a
|=1,|
b
|=2,当且仅当t=
1
4
时,|m|取得最小值,则向量
a
b
的夹角为
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用数量积的性质和二次函数的单调性即可得出.
解答: 解:∵向量
m
=
a
+t
b
(t∈R),|
a
|=1,|
b
|=2,
|
m
|
=
a
2
+t2
b
2
+2t
a
b
=
4t2+4tcosθ+1
=
4(t+
1
2
cosθ)2+sin2θ

∵当且仅当t=
1
4
时,|m|取得最小值,
1
4
+
1
2
cosθ
=0,化为cosθ=-
1
2

∴θ=
3

故答案为:
3
点评:本题考查了数量积的定义和性质、二次函数的单调性,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)计算:2cos
π
2
+tan
π
4
+3sin0+cos2
π
3
+sin
2

(2)化简:
sin(2π-θ)cos(π+θ)cos(
π
2
+θ)cos(
11π
2
-θ)
cos(π-θ)sin(3π-θ)sin(-π-θ)sin(
2
+θ)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程
y
=3-5x,变量x增加一个单位时,y平均增加5个单位;
③曲线上的点与该点的坐标之间具有相关关系;
④在一个2×2的列联表中,由计算得K2=13.079,则没有证据显示两个变量间有关系.
其中错误的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A=
10
02
,B=
12
01
,则AB的逆矩阵(AB)-1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知扇形的半径为1.5,扇形圆心角的弧度数是2,则扇形的周长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一、高二和高三年级学生的人数比为2:2:1,用分层抽样的方法从全体学生中抽取1个容量为45的样本,则高一年级抽取的学生数为
 
人.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=14,A=60°,b:c=8:5,则△ABC的面积S△ABC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
1
7
,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到两人中有一人取到白球时而终止.每个球在每一次被取到的机会是等可能的.则甲取到白球的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=-
4
3
,则
6sinα+cosα
3sinα-2cosα
=
 

查看答案和解析>>

同步练习册答案