精英家教网 > 高中数学 > 题目详情
18.若$\left\{\begin{array}{l}{x-y≤0}\\{x+y≤1}\\{x≥0}\end{array}\right.$,则z=x+2y的最小值为(  )
A.-1B.0C.$\frac{3}{2}$D.2

分析 作出不等式组对应的平面区域,利用z的几何意义即可得到结论.

解答 解:作出不等式组对应的平面区域,
由z=x+2y,得y=$-\frac{1}{2}x+\frac{z}{2}$,平移直线y=$-\frac{1}{2}x+\frac{z}{2}$,由图象可知当直线经过点O(0,0)时,
直线y=$-\frac{1}{2}x+\frac{z}{2}$的截距最小,此时z最小,
此时z=0.
故选:B.

点评 本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,长轴长为8,点P为直线l:x+y=2上任意一点,且|PF1|+|PF2|的最小值为4.
(1)求椭圆C的标准方程;
(2)已知直线l:y=$\frac{1}{2}$x+m与椭圆C交于A,B两点,已知点Q(2,3),求证:直线AQ、BQ关于直线x=2对称.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若关于x的方程4sin2x-msinx+1=0在(0,π)内有两个不同的实数解,则实数m的取值范围为(  )
A.m>4或m<-4B.4<m<5C.4<m<8D.m>5或m=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={1,2,3,4},N={(a,b)|a∈M,b∈M},A是集合N中任意一点,O为坐标原点,则直线OA与y=x2+1有交点的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=Asin(ωx+φ)(A,ω均为正的常数,φ为锐角)的最小正周期为π,当x=$\frac{2π}{3}$时,函数f(x)取得最小值,记a=f(0),b=f($\frac{π}{3}$),c=f($\frac{π}{12}$),则有(  )
A.a=b<cB.a<b<cC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=|x+1|+|ax+1|
(1)若f(-1)=f(1),f(-$\frac{1}{a}$)=f($\frac{1}{a}$)(a∈R且a≠0),试求a的值;
(2)设a>0,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,已知正三棱柱ABC-A1B1C1的各条棱长都相等,则异面直线AB1和A1C所成的角的余弦值大小为(  )
A.$\frac{1}{4}$B.$-\frac{1}{4}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设0<α<π<β<2π,向量$\overrightarrow{a}$=(1,2),$\overline{b}$=(2cosα,sinα),$\overrightarrow{c}$=(sinβ,2cosβ),$\overrightarrow{d}$=(cosβ,-2sinβ).
(1)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求α;
(2)若|$\overrightarrow{c}$+$\overrightarrow{d}$|=$\sqrt{3}$,求sinβ+cosβ的值;
(3)若tanαtanβ=4,求证:$\overrightarrow{b}$∥$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$=(-1,0),$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案