【题目】在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,
=2
=2.
(1)求证:
;
(2)求证:
∥平面
;
![]()
【答案】(1)见解析(2)见解析
【解析】分析:(1)取PC中点F,利用等腰三角形的性质可得PC⊥AF,先证明CD⊥平面PAC,可得CD⊥PC,从而EF⊥PC,故有PC⊥平面AEF,进而证得PC⊥AE.
(2)取AD中点M,利用三角形的中位线证明EM∥平面PAB,利用同位角相等证明MC∥AB,得到平面EMC∥平面PAB,证得EC∥平面PAB.
详解:(1)在Rt△ABC中,AB=1,∠BAC=60°,
∴BC=
,AC=2.取
中点
,连AF, EF,
∵PA=AC=2,∴PC⊥
.
∵PA⊥平面ABCD,
平面ABCD,
∴PA⊥
,又∠ACD=90°,即
,
∴
,∴
,
∴
.
∴
.
∴PC⊥
.
(2)证法一:取AD中点M,连EM,CM.则
EM∥PA.∵EM
平面PAB,PA
平面PAB,
∴EM∥平面PAB.
在Rt△ACD中,∠CAD=60°,AC=AM=2,
∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.
∵MC
平面PAB,AB
平面PAB,
∴MC∥平面PAB.
∵EM∩MC=M,∴平面EMC∥平面PAB.
∵EC
平面EMC,∴EC∥平面PAB.
证法二:延长DC、AB,设它们交于点N,连PN.
∵∠NAC=∠DAC=60°,AC⊥CD,∴C为ND的中点
∵E为PD中点,∴EC∥PN
∵EC
平面PAB,PN
平面PAB,∴EC∥平面PAB.
科目:高中数学 来源: 题型:
【题目】现有4个人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求出4个人中恰有2个人去 参加甲游戏的概率;
(2)求这4个人中去参加甲游戏人数大于去参加乙游戏的人数的概率;
(3)用
分别表示这4个人中去参加甲、乙游戏的人数,记
,求随机变量
的分布列与数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
.
(1)求数列
的通项公式;
(2)记数列
的前
项和为
,求
;
(3)是否存在正整数
,使得
仍为数列
中的项,若存在,求出所有满足的正整数
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的左、右焦点分别为
,
,点
在椭圆上,
,且
的面积为4.
(1)求椭圆的方程;
(2)点
是椭圆上任意一点,
分别是椭圆的左、右顶点,直线
与直线
分别交于
两点,试证:以
为直径的圆交
轴于定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1:
(t为参数,t ≠ 0),其中0 ≤ α < π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:
,C3:
.
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,设椭圆
=1(a>b>0)的左、右焦点分别为F1 , F2 , 右顶点为A,上顶点为B,离心率为e.椭圆上一点C满足:C在x轴上方,且CF1⊥x轴.![]()
(1)若OC∥AB,求e的值;
(2)连结CF2并延长交椭圆于另一点D若
≤e≤
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知半径为1的球O内切于正四面体A﹣BCD,线段MN是球O的一条动直径(M,N是直径的两端点),点P是正四面体A﹣BCD的表面上的一个动点,则
的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】a、b、c是空间中互不重合的三条直线,下面给出五个命题:
①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;
③若a与b相交,b与c相交,则a与c相交;
④若a
平面α,b
平面β,则a,b一定是异面直线;
⑤若a,b与c成等角,则a∥b.
上述命题中正确的是________.(填序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com