精英家教网 > 高中数学 > 题目详情
10.已知等差数列{an}且a4+a9=12,求3a6+a8

分析 设等差数列{an}的公差为d,由题意可得2a1+11d=12,由等差数列的通项公式可得3a6+a8=2(2a1+11d),整体代入可得.

解答 解:设等差数列{an}的公差为d,
∵a4+a9=12,∴2a1+11d=12,
∴3a6+a8=3(a1+5d)+a1+7d
=4a1+22d=2(2a1+11d)=24

点评 本题考查等差数列的通项公式,涉及整体法的应用,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.求下列函数的定义域、值域,并画出图象:
(1)f(x)=3x;
(2)f(x)=-3x+1;
(3)f(x)=-$\frac{1}{x}$;
(4)f(x)=-$\frac{1}{x}$+1;
(5)f(x)=1-x2
(6)f(x)=x2+2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设集合A={x|x2-8x+15≤0},B={x|4x-x2>0},求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A={y|y=log2(2x+1),-$\frac{1}{4}$<x<$\frac{1}{2}$},B={y|y=$\sqrt{4-{2}^{x}}$,1≤x≤2},那么A∩B=[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若函数y=f(x)的定义域是[0,2],求函数g(x)=$\frac{f({x}^{2})}{x-1}$的定义域,有一位学生给出了如下解答过程;因为0≤x≤2,所以x2≤4,又因为x≠1,所以g(x)的定义域是{x|-2≤x≤2,且x≠1}.以上解答过程是否正确?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在数列{an}中,a1=2,3(an-1)(an-1-1)+an-an-1=0(n≥2).
(1)求数列{an}的通项公式;
(2)设数列bn=$\sqrt{{a}_{n}-1}$,{bn}的前n项和为Tn,求证:Tn>$\frac{2}{3}$($\sqrt{3n+1}$-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某班级有学生40人,其中团员15人,全班分四个小组,第一小组10人,其中团员4人,如果要在班内任选一人当学生代表.
(1)求这个代表恰好在第一小组内的概率;
(2)现在要在班内任选一个团员代表,问这个代表恰好在第一小组内的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.计算${∫}_{-π}^{π}$(sinx+x)dx=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.解不等式$\sqrt{2x+1}$>$\sqrt{x+1}$-1,并把x的解集用集合的方式来表示.

查看答案和解析>>

同步练习册答案