精英家教网 > 高中数学 > 题目详情
8.四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,PC与平面PAD所成的角的正弦值为$\frac{{\sqrt{6}}}{4}$.
(1)在棱PD上求一点F,使AF∥平面PEC;
(2)求二面角D-PE-A的余弦值.

分析 (1)分别取PD,PC的中点F,G,由三角形中位线定理及平行公理可得四边形AEGF为平行四边形,得AF∥EG,由线面平行的判定可得AF∥平面PEC,则PD的中点F即为所求;
(2)由已知可得∠CPE即为PC与平面PAB所成的角,求解直角三角形得到PA=2,过D作BA的延长线的垂线,垂足为H,过H作PE的垂线,垂足为K,连接KD,可得∠DKH即为所求的二面角的平面角,然后求解直角三角形得答案.

解答 解:(1)分别取PD,PC的中点F,G,则FG∥CD∥AB,$FG=\frac{1}{2}CD=\frac{1}{2}AB=AE$,
∴四边形AEGF为平行四边形,则AF∥EG,又FG?平面PEC,
∴AF∥平面PEC,
∴PD的中点F即为所求;
(2)由PA⊥平面ABCD,可得平面PAB⊥平面ABCD,
∵E为AB中点,且BC=2BE=2,∠CBE=60°,∴CE⊥AB.
∴∠CPE即为PC与平面PAB所成的角,
在Rt△PEC中,$\frac{CE}{CP}=\frac{{\sqrt{6}}}{4}$,即$\frac{{\sqrt{3}}}{{\sqrt{3+1+P{A^2}}}}=\frac{{\sqrt{6}}}{4}$,
解得:PA=2,
过D作BA的垂线,垂足为H,过H作PE的垂线,垂足为K,连接KD,
∵PA⊥平面ABCD,∴PA⊥DH,
又DH⊥BA,∴DH⊥平面PBA,
∴DH⊥PE,则PE⊥平面DHK,得PE⊥DH,
∴∠DKH即为所求的二面角的平面角,
在Rt△DHK中,$DH=\sqrt{3}$,
由于PE•HK=EH•PA,∴$HK=\frac{EH•PA}{PE}=\frac{4}{{\sqrt{5}}}$,
从而$DK=\sqrt{3+\frac{16}{5}}=\sqrt{\frac{31}{5}}$,
∴$cos∠DKH=\frac{KH}{DK}=\frac{{4\sqrt{31}}}{31}$,
即二面角D-PE-A的余弦值为$\frac{{\sqrt{2}}}{2}$.

点评 本题考查线面平行的判定,考查了二面角平面角的求法,正确找出二面角的平面角是解答该题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设集合A={x|x<0或x>3},B={x||x|<2},则A∩B=(  )
A.(0,2)B.(-2,3)C.(-2,0)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知平面内三向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(-1,3),$\overrightarrow c$=(-2,2)
(1)求满足$\overrightarrow a=m\overrightarrow b+n\overrightarrow c$的实数m,n;
(2)若 $(2\overrightarrow a+k\overrightarrow{c)}$∥$(\overrightarrow b+\overrightarrow{c)}$求实数k的值;
(3)若$(2\overrightarrow a+k\overrightarrow{c)}$⊥$(\overrightarrow b+\overrightarrow{c)}$求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平行四边形ABCD中,AD=4,∠BAD=$\frac{π}{3}$,E为CD中点,若$\overrightarrow{AC}•\overrightarrow{BE}$=4,则AB的长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x)的定义域是R,则下列命题中不正确的是(  )
A.若f(x)是奇函数,则f(f(x))也是奇函数
B.若f(x)是周期函数,则f(f(x))也是周期函数
C.若f(x)是单调递减函数,则f(f(x))也是单调递减函数
D.若方程f(x)=x有实根,则方程f(f(x))=x也有实根

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,求此点取自黑色部分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若角600°的终边上有一点(a,-3),则a的值是(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.-$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$α∈(0,π),sinα+cosα=\frac{1}{5}$.
(Ⅰ) 求sinα-cosα的值;
(Ⅱ) 求$cos(2α+\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足关系$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ 1≤y≤3\end{array}\right.$,则$z=\frac{1}{2}x-y$的取值范围为(-$\frac{7}{2}$,$-\frac{1}{2}$).

查看答案和解析>>

同步练习册答案