精英家教网 > 高中数学 > 题目详情
12.集合A={x|x2-5x+4≤0},B={x||2x-3|≤3},则A∩B=(  )
A.{x|0<x≤3}B.{x|1≤x≤3}C.{x|0≤x≤4}D.{x|1<x≤4}

分析 化简集合A、B,根据交集的定义写出A∩B.

解答 解:集合A={x|x2-5x+4≤0}={x|1≤x≤4},
B={x||2x-3|≤3}={x|-3≤2x-3≤3}={x|0≤x≤3},
则A∩B={x|1≤x≤3}.
故选:B.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在平面直角坐标系中,已知三点A(1,-2),B(2,-1),C(0,-2),则|$\overrightarrow{AB}$+$\overrightarrow{BC}$|=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设曲线C的参数方程为$\left\{\begin{array}{l}x=2+3cosθ\\ y=1+3sinθ\end{array}\right.$(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l的距离为$\frac{{7\sqrt{10}}}{10}$的点的个数为4个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若“0<x<1”是“(x-a)[x-(a+2)]<0”的充分不必要条件,则实数a的取值范围是(  )
A.[-1,0]B.(-1,0)C.(-∞,0]∪[1,+∞)D.(-∞,-1)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一个顶点是抛物线C1:y2=2x的焦点F,两条曲线的一个交点为M,|MF|=$\frac{3}{2}$,则双曲线C2的离心率是(  )
A.$\frac{{\sqrt{17}}}{3}$B.$\frac{{2\sqrt{6}}}{3}$C.$\frac{{\sqrt{33}}}{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若命题:“存在$x∈[\frac{π}{4},\frac{π}{3}]$,使tan2x-atanx-2<0成立”为假命题,则实数a的取值范围为(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点M是抛物线y2=x上的点,点N是圆C:(x-3)2+y2=1上的点,则|MN|的最小值是(  )
A.$\frac{\sqrt{11}}{2}$-1B.$\frac{\sqrt{10}}{2}$-1C.2D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,-m),且$\overrightarrow{a}⊥\overrightarrow{b}$,则$|\overrightarrow a+\overrightarrow b|$=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\overrightarrow p=({2,\sqrt{3}}),\overrightarrow q=({{{cos}^2}\frac{A}{2},sin({B+C})})$,其中A,B,C是△ABC的内角.
(1)当$A=\frac{π}{3}$时,求$|{\overrightarrow q}|$的值;
(2)若$C=\frac{5π}{12},AC=2\sqrt{3}$,当$\overrightarrow p,\overrightarrow q$取最大值是,求B的大小及BC边的长.

查看答案和解析>>

同步练习册答案