精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足f(x)=
log2(1-x),x≤0
f(x-1)-f(x-2),x>0
,则f(2014)的值为(  )
A、-1B、0C、1D、2
考点:对数的运算性质
专题:函数的性质及应用
分析:函数f(x)满足f(x)=
log2(1-x),x≤0
f(x-1)-f(x-2),x>0
,可得f(-1)=log22=1,f(0)=log21=0.f(1)=f(0)-f(-1)=-1,f(2)=f(1)-f(0)=-1-0=-1,…,可得f(n+6)=f(n),利用其周期性即可得出.
解答: 解:函数f(x)满足f(x)=
log2(1-x),x≤0
f(x-1)-f(x-2),x>0

可得f(-1)=log22=1,f(0)=log21=0.
f(1)=f(0)-f(-1)=-1,f(2)=f(1)-f(0)=-1-0=-1,f(3)=f(2)-f(1)=-1-(-1)=0,f(4)=f(3)-f(2)=0-(-1)=1,f(5)=f(4)-f(3)=1-0=1,
f(6)=f(5)-f(4)=1-1=0,f(7)=f(6)-f(5)=0-1=-1,…,
∴数列f(n)是以6为周期的数列.
∴f(2014)=f(335×6+4)=f(4)=1.
故选;C.
点评:本题考查了分段函数的性质、数列的周期性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1+x)(1-x)10 展开式中x3的系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对的边分别为a,b,c,已知tanB=
1
2
,tanC=
1
3
,且c=1.
(Ⅰ)求tanA;
(Ⅱ)求a值.

查看答案和解析>>

科目:高中数学 来源: 题型:

n
k=3
Ak=A1∪A2∪A3∪…An,n∈N*,设集合Ak={y|y=
kx+1
kx
1
k
≤x≤1,k=2,3,…,2015},则
2015
k=2
Ak=(  )
A、∅
B、[2,
3
2
2
]
C、{2}
D、[2,
2016
2015
2015
]

查看答案和解析>>

科目:高中数学 来源: 题型:

复平面内,两点M、N所对应的非零复数是α,β(O是原点).
(1)若α22=0,则△OMN是
 
三角形.
(2)若2α2-2αβ+β2=0,则△OMN是
 
三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-3
+
1
8-x
的定义域为集合A,B={x∈Z,3<x<11},C={x∈R|x<a或x>a+1}.
(1)求A,(∁RA)∩B;
(2)若A∪C=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1、F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点,以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支交于A、B两点,若△F2AB是等边三角形,则双曲线的离心率为 (  )
A、
3
B、2
C、
3
-1
D、1+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|x>4},B={x|-6<x<6}
(1)求A∩B;
(2)求∁RB;
(3)定义A-B={x|x∈A,x∉B},求A-B,A-(A-B)

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px的准线与双曲线
x2
a2
-
y2
b2
=1
(a,b>0)的渐近线构成有一个内角120°的三角形,则双曲线的离心率为(  )
A、
2
3
3
B、
2
C、
3
D、2

查看答案和解析>>

同步练习册答案